Eukaryotic translation initiation factor 3 subunit F

Details

Name
Eukaryotic translation initiation factor 3 subunit F
Synonyms
  • Deubiquitinating enzyme eIF3f
  • eIF-3-epsilon
  • eIF3 p47
  • eIF3f
  • EIF3S5
  • Eukaryotic translation initiation factor 3 subunit 5
Gene Name
EIF3F
Organism
Humans
Amino acid sequence
>lcl|BSEQ0049747|Eukaryotic translation initiation factor 3 subunit F
MATPAVPVSAPPATPTPVPAAAPASVPAPTPAPAAAPVPAAAPASSSDPAAAAAATAAPG
QTPASAQAPAQTPAPALPGPALPGPFPGGRVVRLHPVILASIVDSYERRNEGAARVIGTL
LGTVDKHSVEVTNCFSVPHNESEDEVAVDMEFAKNMYELHKKVSPNELILGWYATGHDIT
EHSVLIHEYYSREAPNPIHLTVDTSLQNGRMSIKAYVSTLMGVPGRTMGVMFTPLTVKYA
YYDTERIGVDLIMKTCFSPNRVIGLSSDLQQVGGASARIQDALSTVLQYAEDVLSGKVSA
DNTVGRFLMSLVNQVPKIVPDDFETMLNSNINDLLMVTYLANLTQSQIALNEKLVNL
Number of residues
357
Molecular Weight
37563.48
Theoretical pI
Not Available
GO Classification
Functions
thiol-dependent ubiquitin-specific protease activity / translation initiation factor activity / translation initiation factor binding
Processes
IRES-dependent viral translational initiation / protein deubiquitination / translational initiation
Components
cytosol / eukaryotic translation initiation factor 3 complex / eukaryotic translation initiation factor 3 complex, eIF3m / membrane
General Function
Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773).
Specific Function
Thiol-dependent ubiquitin-specific protease activity
Pfam Domain Function
Transmembrane Regions
Not Available
Cellular Location
Cytoplasm
Gene sequence
>lcl|BSEQ0049748|Eukaryotic translation initiation factor 3 subunit F (EIF3F)
ATGGCCACACCGGCGGTACCAGTAAGTGCTCCTCCGGCCACGCCAACCCCAGTCCCGGCG
GCGGCCCCAGCCTCAGTTCCAGCGCCAACGCCAGCACCGGCTGCGGCTCCGGTTCCCGCT
GCGGCTCCAGCCTCATCCTCAGACCCTGCGGCAGCAGCGGCTGCAACTGCGGCTCCTGGC
CAGACCCCGGCCTCAGCGCAAGCTCCAGCGCAGACCCCAGCGCCCGCTCTGCCTGGTCCT
GCTCTTCCAGGGCCCTTCCCCGGCGGCCGCGTGGTCAGGCTGCACCCAGTCATTTTGGCC
TCCATTGTGGACAGCTACGAGAGACGCAACGAGGGTGCTGCCCGAGTTATCGGGACCCTG
TTGGGAACTGTCGACAAACACTCAGTGGAGGTCACCAATTGCTTTTCAGTGCCGCACAAT
GAGTCAGAAGATGAAGTGGCTGTTGACATGGAATTTGCTAAGAATATGTATGAACTGCAT
AAAAAAGTTTCTCCAAATGAGCTCATCCTGGGCTGGTACGCTACGGGCCATGACATCACA
GAGCACTCTGTGCTGATCCACGAGTACTACAGCCGAGAGGCCCCCAACCCCATCCACCTC
ACTGTGGACACAAGTCTCCAGAACGGCCGCATGAGCATCAAAGCCTACGTCAGCACTTTA
ATGGGAGTCCCTGGGAGGACCATGGGAGTGATGTTCACGCCTCTGACAGTGAAATACGCG
TACTACGACACTGAACGCATCGGAGTTGACCTGATCATGAAGACCTGCTTTAGCCCCAAC
AGAGTGATTGGACTCTCAAGTGACTTGCAGCAAGTAGGAGGGGCATCAGCTCGCATCCAG
GATGCCCTGAGTACAGTGTTGCAATATGCAGAGGATGTACTGTCTGGAAAGGTGTCAGCT
GACAATACTGTGGGCCGCTTCCTGATGAGCCTGGTTAACCAAGTACCGAAAATAGTTCCC
GATGACTTTGAGACCATGCTCAACAGCAACATCAATGACCTTTTGATGGTGACCTACCTG
GCCAACCTCACACAGTCACAGATTGCACTCAATGAAAAACTTGTAAACCTGTGA
Chromosome Location
11
Locus
11p15.4
External Identifiers
ResourceLink
UniProtKB IDO00303
UniProtKB Entry NameEIF3F_HUMAN
HGNC IDHGNC:3275
General References
  1. Asano K, Vornlocher HP, Richter-Cook NJ, Merrick WC, Hinnebusch AG, Hershey JW: Structure of cDNAs encoding human eukaryotic initiation factor 3 subunits. Possible roles in RNA binding and macromolecular assembly. J Biol Chem. 1997 Oct 24;272(43):27042-52. [Article]
  2. Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. Epub 2003 Dec 21. [Article]
  3. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. [Article]
  4. Shi J, Feng Y, Goulet AC, Vaillancourt RR, Sachs NA, Hershey JW, Nelson MA: The p34cdc2-related cyclin-dependent kinase 11 interacts with the p47 subunit of eukaryotic initiation factor 3 during apoptosis. J Biol Chem. 2003 Feb 14;278(7):5062-71. Epub 2002 Nov 20. [Article]
  5. Holz MK, Ballif BA, Gygi SP, Blenis J: mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell. 2005 Nov 18;123(4):569-80. [Article]
  6. Kolupaeva VG, Unbehaun A, Lomakin IB, Hellen CU, Pestova TV: Binding of eukaryotic initiation factor 3 to ribosomal 40S subunits and its role in ribosomal dissociation and anti-association. RNA. 2005 Apr;11(4):470-86. Epub 2005 Feb 9. [Article]
  7. LeFebvre AK, Korneeva NL, Trutschl M, Cvek U, Duzan RD, Bradley CA, Hershey JW, Rhoads RE: Translation initiation factor eIF4G-1 binds to eIF3 through the eIF3e subunit. J Biol Chem. 2006 Aug 11;281(32):22917-32. Epub 2006 Jun 9. [Article]
  8. Masutani M, Sonenberg N, Yokoyama S, Imataka H: Reconstitution reveals the functional core of mammalian eIF3. EMBO J. 2007 Jul 25;26(14):3373-83. Epub 2007 Jun 21. [Article]
  9. Damoc E, Fraser CS, Zhou M, Videler H, Mayeur GL, Hershey JW, Doudna JA, Robinson CV, Leary JA: Structural characterization of the human eukaryotic initiation factor 3 protein complex by mass spectrometry. Mol Cell Proteomics. 2007 Jul;6(7):1135-46. Epub 2007 Feb 23. [Article]
  10. Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP: A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10762-7. doi: 10.1073/pnas.0805139105. Epub 2008 Jul 31. [Article]
  11. Mayya V, Lundgren DH, Hwang SI, Rezaul K, Wu L, Eng JK, Rodionov V, Han DK: Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal. 2009 Aug 18;2(84):ra46. doi: 10.1126/scisignal.2000007. [Article]
  12. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M: Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009 Aug 14;325(5942):834-40. doi: 10.1126/science.1175371. Epub 2009 Jul 16. [Article]
  13. Lee JP, Brauweiler A, Rudolph M, Hooper JE, Drabkin HA, Gemmill RM: The TRC8 ubiquitin ligase is sterol regulated and interacts with lipid and protein biosynthetic pathways. Mol Cancer Res. 2010 Jan;8(1):93-106. doi: 10.1158/1541-7786.MCR-08-0491. Epub 2010 Jan 12. [Article]
  14. Zhou M, Sandercock AM, Fraser CS, Ridlova G, Stephens E, Schenauer MR, Yokoi-Fong T, Barsky D, Leary JA, Hershey JW, Doudna JA, Robinson CV: Mass spectrometry reveals modularity and a complete subunit interaction map of the eukaryotic translation factor eIF3. Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18139-44. doi: 10.1073/pnas.0801313105. Epub 2008 Jul 1. [Article]
  15. Moretti J, Chastagner P, Gastaldello S, Heuss SF, Dirac AM, Bernards R, Masucci MG, Israel A, Brou C: The translation initiation factor 3f (eIF3f) exhibits a deubiquitinase activity regulating Notch activation. PLoS Biol. 2010 Nov 23;8(11):e1000545. doi: 10.1371/journal.pbio.1000545. [Article]
  16. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal. 2010 Jan 12;3(104):ra3. doi: 10.1126/scisignal.2000475. [Article]
  17. Burkard TR, Planyavsky M, Kaupe I, Breitwieser FP, Burckstummer T, Bennett KL, Superti-Furga G, Colinge J: Initial characterization of the human central proteome. BMC Syst Biol. 2011 Jan 26;5:17. doi: 10.1186/1752-0509-5-17. [Article]
  18. Rigbolt KT, Prokhorova TA, Akimov V, Henningsen J, Johansen PT, Kratchmarova I, Kassem M, Mann M, Olsen JV, Blagoev B: System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal. 2011 Mar 15;4(164):rs3. doi: 10.1126/scisignal.2001570. [Article]
  19. Zhou H, Di Palma S, Preisinger C, Peng M, Polat AN, Heck AJ, Mohammed S: Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res. 2013 Jan 4;12(1):260-71. doi: 10.1021/pr300630k. Epub 2012 Dec 18. [Article]
  20. Bian Y, Song C, Cheng K, Dong M, Wang F, Huang J, Sun D, Wang L, Ye M, Zou H: An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics. 2014 Jan 16;96:253-62. doi: 10.1016/j.jprot.2013.11.014. Epub 2013 Nov 22. [Article]
  21. Lee AS, Kranzusch PJ, Cate JH: eIF3 targets cell-proliferation messenger RNAs for translational activation or repression. Nature. 2015 Jun 4;522(7554):111-4. doi: 10.1038/nature14267. Epub 2015 Apr 6. [Article]
  22. Vaca Jacome AS, Rabilloud T, Schaeffer-Reiss C, Rompais M, Ayoub D, Lane L, Bairoch A, Van Dorsselaer A, Carapito C: N-terminome analysis of the human mitochondrial proteome. Proteomics. 2015 Jul;15(14):2519-24. doi: 10.1002/pmic.201400617. Epub 2015 Jun 8. [Article]
  23. Lee AS, Kranzusch PJ, Doudna JA, Cate JH: eIF3d is an mRNA cap-binding protein that is required for specialized translation initiation. Nature. 2016 Aug 4;536(7614):96-9. Epub 2016 Jul 27. [Article]
  24. Siridechadilok B, Fraser CS, Hall RJ, Doudna JA, Nogales E: Structural roles for human translation factor eIF3 in initiation of protein synthesis. Science. 2005 Dec 2;310(5753):1513-5. [Article]

Drug Relations

Drug Relations
DrugBank IDNameDrug groupPharmacological action?ActionsDetails
DB04216Quercetinexperimental, investigationalunknownDetails