Polyubiquitin-C

Details

Name
Polyubiquitin-C
Synonyms
Not Available
Gene Name
UBC
Organism
Humans
Amino acid sequence
>lcl|BSEQ0021870|Polyubiquitin-C
MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYN
IQKESTLHLVLRLRGGMQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLI
FAGKQLEDGRTLSDYNIQKESTLHLVLRLRGGMQIFVKTLTGKTITLEVEPSDTIENVKA
KIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGGMQIFVKTLTGKT
ITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLR
LRGGMQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTL
SDYNIQKESTLHLVLRLRGGMQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQ
QRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGGMQIFVKTLTGKTITLEVEPSDTIE
NVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGGMQIFVKTL
TGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLH
LVLRLRGGMQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLED
GRTLSDYNIQKESTLHLVLRLRGGV
Number of residues
685
Molecular Weight
77038.08
Theoretical pI
Not Available
GO Classification
Functions
poly(A) RNA binding / protease binding
Processes
activation of MAPK activity / activation of MAPKK activity / anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolic process / antigen processing and presentation of exogenous peptide antigen via MHC class I / antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-dependent / antigen processing and presentation of peptide antigen via MHC class I / apoptotic process / apoptotic signaling pathway / axon guidance / carbohydrate metabolic process / cell surface receptor signaling pathway / cellular response to hypoxia / circadian rhythm / cytokine-mediated signaling pathway / DNA damage response, detection of DNA damage / DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest / DNA repair / double-strand break repair / double-strand break repair via homologous recombination / endosomal transport / epidermal growth factor receptor signaling pathway / error-free translesion synthesis / error-prone translesion synthesis / Fc-epsilon receptor signaling pathway / fibroblast growth factor receptor signaling pathway / G1/S transition of mitotic cell cycle / G2/M transition of mitotic cell cycle / gene expression / global genome nucleotide-excision repair / glucose metabolic process / glycogen biosynthetic process / I-kappaB kinase/NF-kappaB signaling / innate immune response / insulin receptor signaling pathway / interstrand cross-link repair / intracellular transport of virus / ion transmembrane transport / JNK cascade / macroautophagy / macromitophagy / MAPK cascade / membrane organization / mitotic cell cycle / MyD88-dependent toll-like receptor signaling pathway / MyD88-independent toll-like receptor signaling pathway / necroptotic process / negative regulation of apoptotic process / negative regulation of canonical Wnt signaling pathway / negative regulation of epidermal growth factor receptor signaling pathway / negative regulation of transcription from RNA polymerase II promoter / negative regulation of transforming growth factor beta receptor signaling pathway / negative regulation of type I interferon production / negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle / neurotrophin TRK receptor signaling pathway / NIK/NF-kappaB signaling / Notch receptor processing / Notch signaling pathway / nucleotide-binding domain, leucine rich repeat containing receptor signaling pathway / nucleotide-binding oligomerization domain containing signaling pathway / nucleotide-excision repair / nucleotide-excision repair, DNA damage recognition / nucleotide-excision repair, DNA gap filling / nucleotide-excision repair, DNA incision / positive regulation of apoptotic process / positive regulation of canonical Wnt signaling pathway / positive regulation of I-kappaB kinase/NF-kappaB signaling / positive regulation of NF-kappaB transcription factor activity / positive regulation of transcription from RNA polymerase II promoter / positive regulation of type I interferon production / positive regulation of ubiquitin-protein ligase activity involved in regulation of mitotic cell cycle transition / programmed cell death / programmed necrotic cell death / protein polyubiquitination / Ras protein signal transduction / regulation of apoptotic process / regulation of mRNA stability / regulation of necrotic cell death / regulation of transcription from RNA polymerase II promoter in response to hypoxia / regulation of tumor necrosis factor-mediated signaling pathway / regulation of type I interferon production / regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle / small GTPase mediated signal transduction / small molecule metabolic process / stimulatory C-type lectin receptor signaling pathway / stress-activated MAPK cascade / T cell receptor signaling pathway / toll-like receptor 10 signaling pathway / toll-like receptor 2 signaling pathway / toll-like receptor 3 signaling pathway / toll-like receptor 4 signaling pathway / toll-like receptor 5 signaling pathway / toll-like receptor 9 signaling pathway / toll-like receptor signaling pathway / toll-like receptor TLR1 / toll-like receptor TLR6 / transcription initiation from RNA polymerase II promoter / transcription-coupled nucleotide-excision repair / transcription, DNA-templated / transforming growth factor beta receptor signaling pathway / translesion synthesis / transmembrane transport / TRIF-dependent toll-like receptor signaling pathway / tumor necrosis factor-mediated signaling pathway / vascular endothelial growth factor receptor signaling pathway / viral life cycle / viral process / viral protein processing / virion assembly
Components
cytosol / endocytic vesicle membrane / endosome membrane / extracellular exosome / extracellular space / nucleoplasm / nucleus / plasma membrane
General Function
Protease binding
Specific Function
Ubiquitin: Exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in lysosomal degradation; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling.
Pfam Domain Function
Transmembrane Regions
Not Available
Cellular Location
Cytoplasm
Gene sequence
>lcl|BSEQ0021871|Polyubiquitin-C (UBC)
ATGCAGATCTTCGTGAAGACTCTGACTGGTAAGACCATCACCCTCGAGGTTGAGCCCAGT
GACACCATCGAGAATGTCAAGGCAAAGATCCAAGATAAGGAAGGCATCCCTCCTGACCAG
CAGAGGCTGATCTTTGCTGGAAAACAGCTGGAAGATGGGCGCACCCTGTCTGACTACAAC
ATCCAGAAAGAGTCCACCCTGCACCTGGTGCTCCGTCTCAGAGGTGGGATGCAAATCTTC
GTGAAGACACTCACTGGCAAGACCATCACCCTTGAGGTCGAGCCCAGTGACACCATCGAG
AACGTCAAAGCAAAGATCCAGGACAAGGAAGGCATTCCTCCTGACCAGCAGAGGTTGATC
TTTGCCGGAAAGCAGCTGGAAGATGGGCGCACCCTGTCTGACTACAACATCCAGAAAGAG
TCTACCCTGCACCTGGTGCTCCGTCTCAGAGGTGGGATGCAGATCTTCGTGAAGACCCTG
ACTGGTAAGACCATCACCCTCGAGGTGGAGCCCAGTGACACCATCGAGAATGTCAAGGCA
AAGATCCAAGATAAGGAAGGCATTCCTCCTGATCAGCAGAGGTTGATCTTTGCCGGAAAA
CAGCTGGAAGATGGTCGTACCCTGTCTGACTACAACATCCAGAAAGAGTCCACCTTGCAC
CTGGTACTCCGTCTCAGAGGTGGGATGCAAATCTTCGTGAAGACACTCACTGGCAAGACC
ATCACCCTTGAGGTCGAGCCCAGTGACACTATCGAGAACGTCAAAGCAAAGATCCAAGAC
AAGGAAGGCATTCCTCCTGACCAGCAGAGGTTGATCTTTGCCGGAAAGCAGCTGGAAGAT
GGGCGCACCCTGTCTGACTACAACATCCAGAAAGAGTCTACCCTGCACCTGGTGCTCCGT
CTCAGAGGTGGGATGCAGATCTTCGTGAAGACCCTGACTGGTAAGACCATCACTCTCGAA
GTGGAGCCGAGTGACACCATTGAGAATGTCAAGGCAAAGATCCAAGACAAGGAAGGCATC
CCTCCTGACCAGCAGAGGTTGATCTTTGCCGGAAAACAGCTGGAAGATGGTCGTACCCTG
TCTGACTACAACATCCAGAAAGAGTCCACCTTGCACCTGGTGCTCCGTCTCAGAGGTGGG
ATGCAGATCTTCGTGAAGACCCTGACTGGTAAGACCATCACTCTCGAGGTGGAGCCGAGT
GACACCATTGAGAATGTCAAGGCAAAGATCCAAGACAAGGAAGGCATCCCTCCTGACCAG
CAGAGGTTGATCTTTGCTGGGAAACAGCTGGAAGATGGACGCACCCTGTCTGACTACAAC
ATCCAGAAAGAGTCCACCCTGCACCTGGTGCTCCGTCTTAGAGGTGGGATGCAGATCTTC
GTGAAGACCCTGACTGGTAAGACCATCACTCTCGAAGTGGAGCCGAGTGACACCATTGAG
AATGTCAAGGCAAAGATCCAAGACAAGGAAGGCATCCCTCCTGACCAGCAGAGGTTGATC
TTTGCTGGGAAACAGCTGGAAGATGGACGCACCCTGTCTGACTACAACATCCAGAAAGAG
TCCACCCTGCACCTGGTGCTCCGTCTTAGAGGTGGGATGCAGATCTTCGTGAAGACCCTG
ACTGGTAAGACCATCACTCTCGAAGTGGAGCCGAGTGACACCATTGAGAATGTCAAGGCA
AAGATCCAAGACAAGGAAGGCATCCCTCCTGACCAGCAGAGGTTGATCTTTGCTGGGAAA
CAGCTGGAAGATGGACGCACCCTGTCTGACTACAACATCCAGAAAGAGTCCACCCTGCAC
CTGGTGCTCCGTCTCAGAGGTGGGATGCAAATCTTCGTGAAGACCCTGACTGGTAAGACC
ATCACCCTCGAGGTGGAGCCCAGTGACACCATCGAGAATGTCAAGGCAAAGATCCAAGAT
AAGGAAGGCATCCCTCCTGATCAGCAGAGGTTGATCTTTGCTGGGAAACAGCTGGAAGAT
GGACGCACCCTGTCTGACTACAACATCCAGAAAGAGTCCACTCTGCACTTGGTCCTGCGC
TTGAGGGGGGGTGTCTAA
Chromosome Location
12
Locus
Not Available
External Identifiers
ResourceLink
UniProtKB IDP0CG48
UniProtKB Entry NameUBC_HUMAN
HGNC IDHGNC:12468
General References
  1. Wiborg O, Pedersen MS, Wind A, Berglund LE, Marcker KA, Vuust J: The human ubiquitin multigene family: some genes contain multiple directly repeated ubiquitin coding sequences. EMBO J. 1985 Mar;4(3):755-9. [Article]
  2. Kim NS, Yamaguchi T, Sekine S, Saeki M, Iwamuro S, Kato S: Cloning of human polyubiquitin cDNAs and a ubiquitin-binding assay involving its in vitro translation product. J Biochem. 1998 Jul;124(1):35-9. [Article]
  3. Tachikui H, Saitou N, Nakajima T, Hayasaka I, Ishida T, Inoue I: Lineage-specific homogenization of the polyubiquitin gene among human and great apes. J Mol Evol. 2003 Dec;57(6):737-44. [Article]
  4. Scherer SE, Muzny DM, Buhay CJ, Chen R, Cree A, Ding Y, Dugan-Rocha S, Gill R, Gunaratne P, Harris RA, Hawes AC, Hernandez J, Hodgson AV, Hume J, Jackson A, Khan ZM, Kovar-Smith C, Lewis LR, Lozado RJ, Metzker ML, Milosavljevic A, Miner GR, Montgomery KT, Morgan MB, Nazareth LV, Scott G, Sodergren E, Song XZ, Steffen D, Lovering RC, Wheeler DA, Worley KC, Yuan Y, Zhang Z, Adams CQ, Ansari-Lari MA, Ayele M, Brown MJ, Chen G, Chen Z, Clerc-Blankenburg KP, Davis C, Delgado O, Dinh HH, Draper H, Gonzalez-Garay ML, Havlak P, Jackson LR, Jacob LS, Kelly SH, Li L, Li Z, Liu J, Liu W, Lu J, Maheshwari M, Nguyen BV, Okwuonu GO, Pasternak S, Perez LM, Plopper FJ, Santibanez J, Shen H, Tabor PE, Verduzco D, Waldron L, Wang Q, Williams GA, Zhang J, Zhou J, Allen CC, Amin AG, Anyalebechi V, Bailey M, Barbaria JA, Bimage KE, Bryant NP, Burch PE, Burkett CE, Burrell KL, Calderon E, Cardenas V, Carter K, Casias K, Cavazos I, Cavazos SR, Ceasar H, Chacko J, Chan SN, Chavez D, Christopoulos C, Chu J, Cockrell R, Cox CD, Dang M, Dathorne SR, David R, Davis CM, Davy-Carroll L, Deshazo DR, Donlin JE, D'Souza L, Eaves KA, Egan A, Emery-Cohen AJ, Escotto M, Flagg N, Forbes LD, Gabisi AM, Garza M, Hamilton C, Henderson N, Hernandez O, Hines S, Hogues ME, Huang M, Idlebird DG, Johnson R, Jolivet A, Jones S, Kagan R, King LM, Leal B, Lebow H, Lee S, LeVan JM, Lewis LC, London P, Lorensuhewa LM, Loulseged H, Lovett DA, Lucier A, Lucier RL, Ma J, Madu RC, Mapua P, Martindale AD, Martinez E, Massey E, Mawhiney S, Meador MG, Mendez S, Mercado C, Mercado IC, Merritt CE, Miner ZL, Minja E, Mitchell T, Mohabbat F, Mohabbat K, Montgomery B, Moore N, Morris S, Munidasa M, Ngo RN, Nguyen NB, Nickerson E, Nwaokelemeh OO, Nwokenkwo S, Obregon M, Oguh M, Oragunye N, Oviedo RJ, Parish BJ, Parker DN, Parrish J, Parks KL, Paul HA, Payton BA, Perez A, Perrin W, Pickens A, Primus EL, Pu LL, Puazo M, Quiles MM, Quiroz JB, Rabata D, Reeves K, Ruiz SJ, Shao H, Sisson I, Sonaike T, Sorelle RP, Sutton AE, Svatek AF, Svetz LA, Tamerisa KS, Taylor TR, Teague B, Thomas N, Thorn RD, Trejos ZY, Trevino BK, Ukegbu ON, Urban JB, Vasquez LI, Vera VA, Villasana DM, Wang L, Ward-Moore S, Warren JT, Wei X, White F, Williamson AL, Wleczyk R, Wooden HS, Wooden SH, Yen J, Yoon L, Yoon V, Zorrilla SE, Nelson D, Kucherlapati R, Weinstock G, Gibbs RA: The finished DNA sequence of human chromosome 12. Nature. 2006 Mar 16;440(7082):346-51. [Article]
  5. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. [Article]
  6. Nenoi M, Mita K, Ichimura S, Cartwright IL, Takahashi E, Yamauchi M, Tsuji H: Heterogeneous structure of the polyubiquitin gene UbC of HeLa S3 cells. Gene. 1996 Oct 10;175(1-2):179-85. [Article]
  7. Schlesinger DH, Goldstein G: Molecular conservation of 74 amino acid sequence of ubiquitin between cattle and man. Nature. 1975 May 29;255(5507):423-4. [Article]
  8. Cripps D, Thomas SN, Jeng Y, Yang F, Davies P, Yang AJ: Alzheimer disease-specific conformation of hyperphosphorylated paired helical filament-Tau is polyubiquitinated through Lys-48, Lys-11, and Lys-6 ubiquitin conjugation. J Biol Chem. 2006 Apr 21;281(16):10825-38. Epub 2006 Jan 27. [Article]
  9. Nenoi M, Mita K, Ichimura S, Kawano A: Higher frequency of concerted evolutionary events in rodents than in man at the polyubiquitin gene VNTR locus. Genetics. 1998 Feb;148(2):867-76. [Article]
  10. Einspanier R, Sharma HS, Scheit KH: Cloning and sequence analysis of a cDNA encoding poly-ubiquitin in human ovarian granulosa cells. Biochem Biophys Res Commun. 1987 Sep 15;147(2):581-7. [Article]
  11. Huang F, Kirkpatrick D, Jiang X, Gygi S, Sorkin A: Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell. 2006 Mar 17;21(6):737-48. [Article]
  12. Okumura F, Hatakeyama S, Matsumoto M, Kamura T, Nakayama KI: Functional regulation of FEZ1 by the U-box-type ubiquitin ligase E4B contributes to neuritogenesis. J Biol Chem. 2004 Dec 17;279(51):53533-43. Epub 2004 Oct 5. [Article]
  13. Vasilescu J, Zweitzig DR, Denis NJ, Smith JC, Ethier M, Haines DS, Figeys D: The proteomic reactor facilitates the analysis of affinity-purified proteins by mass spectrometry: application for identifying ubiquitinated proteins in human cells. J Proteome Res. 2007 Jan;6(1):298-305. [Article]
  14. Motegi A, Liaw HJ, Lee KY, Roest HP, Maas A, Wu X, Moinova H, Markowitz SD, Ding H, Hoeijmakers JH, Myung K: Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks. Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12411-6. doi: 10.1073/pnas.0805685105. Epub 2008 Aug 21. [Article]
  15. Komander D: The emerging complexity of protein ubiquitination. Biochem Soc Trans. 2009 Oct;37(Pt 5):937-53. doi: 10.1042/BST0370937. [Article]
  16. Kazlauskaite A, Kondapalli C, Gourlay R, Campbell DG, Ritorto MS, Hofmann K, Alessi DR, Knebel A, Trost M, Muqit MM: Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem J. 2014 May 15;460(1):127-39. doi: 10.1042/BJ20140334. [Article]
  17. Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, Sarraf SA, Banerjee S, Youle RJ: PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol. 2014 Apr 28;205(2):143-53. doi: 10.1083/jcb.201402104. Epub 2014 Apr 21. [Article]
  18. Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T, Endo T, Fon EA, Trempe JF, Saeki Y, Tanaka K, Matsuda N: Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature. 2014 Jun 5;510(7503):162-6. doi: 10.1038/nature13392. Epub 2014 Jun 4. [Article]
  19. Vijay-Kumar S, Bugg CE, Cook WJ: Structure of ubiquitin refined at 1.8 A resolution. J Mol Biol. 1987 Apr 5;194(3):531-44. [Article]
  20. Ramage R, Green J, Muir TW, Ogunjobi OM, Love S, Shaw K: Synthetic, structural and biological studies of the ubiquitin system: the total chemical synthesis of ubiquitin. Biochem J. 1994 Apr 1;299 ( Pt 1):151-8. [Article]
  21. Cook WJ, Jeffrey LC, Kasperek E, Pickart CM: Structure of tetraubiquitin shows how multiubiquitin chains can be formed. J Mol Biol. 1994 Feb 18;236(2):601-9. [Article]
  22. Phillips CL, Thrower J, Pickart CM, Hill CP: Structure of a new crystal form of tetraubiquitin. Acta Crystallogr D Biol Crystallogr. 2001 Feb;57(Pt 2):341-4. [Article]
  23. Hu M, Li P, Li M, Li W, Yao T, Wu JW, Gu W, Cohen RE, Shi Y: Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell. 2002 Dec 27;111(7):1041-54. [Article]
  24. Ye Y, Akutsu M, Reyes-Turcu F, Enchev RI, Wilkinson KD, Komander D: Polyubiquitin binding and cross-reactivity in the USP domain deubiquitinase USP21. EMBO Rep. 2011 Apr;12(4):350-7. doi: 10.1038/embor.2011.17. Epub 2011 Mar 11. [Article]
  25. Bremm A, Freund SM, Komander D: Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne. Nat Struct Mol Biol. 2010 Aug;17(8):939-47. doi: 10.1038/nsmb.1873. Epub 2010 Jul 11. [Article]
  26. Mevissen TE, Hospenthal MK, Geurink PP, Elliott PR, Akutsu M, Arnaudo N, Ekkebus R, Kulathu Y, Wauer T, El Oualid F, Freund SM, Ovaa H, Komander D: OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell. 2013 Jul 3;154(1):169-84. doi: 10.1016/j.cell.2013.05.046. [Article]
  27. Wauer T, Swatek KN, Wagstaff JL, Gladkova C, Pruneda JN, Michel MA, Gersch M, Johnson CM, Freund SM, Komander D: Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis. EMBO J. 2015 Feb 3;34(3):307-25. doi: 10.15252/embj.201489847. Epub 2014 Dec 19. [Article]

Drug Relations

Drug Relations
DrugBank IDNameDrug groupPharmacological action?ActionsDetails
DB04464N-FormylmethionineexperimentalunknownDetails