You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on DrugBank.
Identification
NameCerivastatin
Accession NumberDB00439  (APRD00102)
TypeSmall Molecule
GroupsWithdrawn
Description

On August 8, 2001 the U.S. Food and Drug Administration (FDA) announced that Bayer Pharmaceutical Division voluntarily withdrew Baycol from the U.S. market, due to reports of fatal Rhabdomyolysis, a severe adverse reaction from this cholesterol-lowering (lipid-lowering) product. It has also been withdrawn from the Canadian market.

Structure
Thumb
SynonymsNot Available
External Identifiers Not Available
Prescription Products
NameDosageStrengthRouteLabellerMarketing StartMarketing End
Baycoltablet0.8 mgoralBayer Inc2000-12-282001-10-26Canada
Baycoltablet0.4 mgoralBayer Inc2000-01-062001-10-26Canada
Baycol (0.2mg)tablet0.2 mgoralBayer Inc1998-03-112001-10-26Canada
Baycol (0.3mg)tablet0.3 mgoralBayer Inc1998-03-112001-10-26Canada
Generic Prescription ProductsNot Available
Over the Counter ProductsNot Available
International Brands
NameCompany
LipobayNot Available
RivastatinNot Available
Brand mixturesNot Available
Salts
Name/CASStructureProperties
Cerivastatin sodium
143201-11-0
Thumb
  • InChI Key: GPUADMRJQVPIAS-QCVDVZFFSA-M
  • Monoisotopic Mass: 481.224046051
  • Average Mass: 481.5321
DBSALT000330
Categories
UNIIAM91H2KS67
CAS number145599-86-6
WeightAverage: 459.5503
Monoisotopic: 459.242101408
Chemical FormulaC26H34FNO5
InChI KeyInChIKey=SEERZIQQUAZTOL-ANMDKAQQSA-N
InChI
InChI=1S/C26H34FNO5/c1-15(2)25-21(11-10-19(29)12-20(30)13-23(31)32)24(17-6-8-18(27)9-7-17)22(14-33-5)26(28-25)16(3)4/h6-11,15-16,19-20,29-30H,12-14H2,1-5H3,(H,31,32)/b11-10+/t19-,20-/m1/s1
IUPAC Name
(3R,5S,6E)-7-[4-(4-fluorophenyl)-5-(methoxymethyl)-2,6-bis(propan-2-yl)pyridin-3-yl]-3,5-dihydroxyhept-6-enoic acid
SMILES
COCC1=C(C2=CC=C(F)C=C2)C(\C=C\[C@@H](O)C[C@@H](O)CC(O)=O)=C(C(C)C)N=C1C(C)C
Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as phenylpyridines. These are polycyclic aromatic compounds containing a benzene ring linked to a pyridine ring through a CC or CN bond.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassPyridines and derivatives
Sub ClassPhenylpyridines
Direct ParentPhenylpyridines
Alternative Parents
Substituents
  • 4-phenylpyridine
  • Medium-chain hydroxy acid
  • Medium-chain fatty acid
  • Heterocyclic fatty acid
  • Halogenated fatty acid
  • Halobenzene
  • Fluorobenzene
  • Beta-hydroxy acid
  • Fatty acyl
  • Fatty acid
  • Benzenoid
  • Unsaturated fatty acid
  • Hydroxy acid
  • Monocyclic benzene moiety
  • Aryl halide
  • Aryl fluoride
  • Heteroaromatic compound
  • Secondary alcohol
  • Azacycle
  • Monocarboxylic acid or derivatives
  • Ether
  • Dialkyl ether
  • Carboxylic acid
  • Carboxylic acid derivative
  • Hydrocarbon derivative
  • Organooxygen compound
  • Organonitrogen compound
  • Organofluoride
  • Organohalogen compound
  • Carbonyl group
  • Alcohol
  • Aromatic heteromonocyclic compound
Molecular FrameworkAromatic heteromonocyclic compounds
External Descriptors
Pharmacology
IndicationUsed as an adjunct to diet for the reduction of elevated total and LDL cholesterol levels in patients with primary hypercholesterolemia and mixed dyslipidemia (Fredrickson Types IIa and IIb) when the response to dietary restriction of saturated fat and cholesterol and other non-pharmacological measures alone has been inadequate.
PharmacodynamicsCerivastatin, a competitive HMG-CoA reductase inhibitor effective in lowering LDL cholesterol and triglycerides, is used to treat primary hypercholesterolemia and mixed dyslipidemia (Fredrickson types IIa and IIb).
Mechanism of actionCerivastatin competitively inhibits hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase, the hepatic enzyme responsible for converting HMG-CoA to mevalonate. As mevalonate is a precursor of sterols such as cholesterol, this results in a decrease in cholesterol in hepatic cells, upregulation of LDL-receptors, and an increase in hepatic uptake of LDL-cholesterol from the circulation.
Related Articles
AbsorptionThe mean absolute oral bioavailability 60% (range 39 - 101%).
Volume of distributionNot Available
Protein bindingMore than 99% of the circulating drug is bound to plasma proteins (80% to albumin).
Metabolism

Hepatic. Biotransformation pathways for cerivastatin in humans include the following: demethylation of the benzylic methyl ether to form Ml and hydroxylation of the methyl group in the 6'-isopropyl moiety to form M23.

SubstrateEnzymesProduct
Cerivastatin
HydroxycerivastatinDetails
Cerivastatin
DesmethylcerivastatinDetails
Route of eliminationNot Available
Half life2-3 hours
ClearanceNot Available
ToxicityRhabdomyolysis, liver concerns
Affected organisms
  • Humans and other mammals
Pathways
PathwayCategorySMPDB ID
Cerivastatin Action PathwayDrug actionSMP00111
SNP Mediated EffectsNot Available
SNP Mediated Adverse Drug ReactionsNot Available
ADMET
Predicted ADMET features
PropertyValueProbability
Human Intestinal Absorption+0.9628
Blood Brain Barrier+0.9381
Caco-2 permeable+0.5141
P-glycoprotein substrateSubstrate0.6231
P-glycoprotein inhibitor INon-inhibitor0.5221
P-glycoprotein inhibitor IINon-inhibitor0.719
Renal organic cation transporterNon-inhibitor0.8848
CYP450 2C9 substrateNon-substrate0.7898
CYP450 2D6 substrateNon-substrate0.9116
CYP450 3A4 substrateSubstrate0.672
CYP450 1A2 substrateNon-inhibitor0.67
CYP450 2C9 inhibitorNon-inhibitor0.64
CYP450 2D6 inhibitorNon-inhibitor0.8717
CYP450 2C19 inhibitorNon-inhibitor0.596
CYP450 3A4 inhibitorNon-inhibitor0.6191
CYP450 inhibitory promiscuityHigh CYP Inhibitory Promiscuity0.5668
Ames testNon AMES toxic0.817
CarcinogenicityNon-carcinogens0.8706
BiodegradationNot ready biodegradable0.9881
Rat acute toxicity2.6748 LD50, mol/kg Not applicable
hERG inhibition (predictor I)Weak inhibitor0.9901
hERG inhibition (predictor II)Non-inhibitor0.8623
ADMET data is predicted using admetSAR, a free tool for evaluating chemical ADMET properties. (23092397 )
Pharmacoeconomics
Manufacturers
  • Bayer pharmaceuticals corp
Packagers
Dosage forms
FormRouteStrength
Tabletoral0.4 mg
Tabletoral0.8 mg
Tabletoral0.2 mg
Tabletoral0.3 mg
PricesNot Available
Patents
Patent NumberPediatric ExtensionApprovedExpires (estimated)
CA1340798 No1999-10-262016-10-26Canada
CA2057444 No1998-05-262011-12-11Canada
US5177080 No1994-11-262011-11-26Us
Properties
StateSolid
Experimental Properties
PropertyValueSource
water solubilityHighly solubilityNot Available
logP3.4Not Available
Predicted Properties
PropertyValueSource
Water Solubility0.00419 mg/mLALOGPS
logP4.15ALOGPS
logP2.67ChemAxon
logS-5ALOGPS
pKa (Strongest Acidic)4.05ChemAxon
pKa (Strongest Basic)5.58ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count6ChemAxon
Hydrogen Donor Count3ChemAxon
Polar Surface Area99.88 Å2ChemAxon
Rotatable Bond Count11ChemAxon
Refractivity126.82 m3·mol-1ChemAxon
Polarizability50.23 Å3ChemAxon
Number of Rings2ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Mass Spec (NIST)Not Available
SpectraNot Available
References
Synthesis ReferenceNot Available
General References
  1. Furberg CD, Pitt B: Withdrawal of cerivastatin from the world market. Curr Control Trials Cardiovasc Med. 2001;2(5):205-207. [PubMed:11806796 ]
External Links
ATC CodesC10AA06
AHFS CodesNot Available
PDB EntriesNot Available
FDA labelDownload (144 KB)
MSDSNot Available
Interactions
Drug InteractionsNot Available
Food InteractionsNot Available

Targets

Kind
Protein
Organism
Human
Pharmacological action
yes
Actions
inhibitor
General Function:
Nadph binding
Specific Function:
Transmembrane glycoprotein that is the rate-limiting enzyme in cholesterol biosynthesis as well as in the biosynthesis of nonsterol isoprenoids that are essential for normal cell function including ubiquinone and geranylgeranyl proteins.
Gene Name:
HMGCR
Uniprot ID:
P04035
Molecular Weight:
97475.155 Da
References
  1. Shiomi M, Ito T: Effect of cerivastatin sodium, a new inhibitor of HMG-CoA reductase, on plasma lipid levels, progression of atherosclerosis, and the lesional composition in the plaques of WHHL rabbits. Br J Pharmacol. 1999 Feb;126(4):961-8. [PubMed:10193776 ]
  2. Blumenthal RS: Statins: effective antiatherosclerotic therapy. Am Heart J. 2000 Apr;139(4):577-83. [PubMed:10740137 ]
  3. Ganne F, Vasse M, Beaudeux JL, Peynet J, Francois A, Mishal Z, Chartier A, Tobelem G, Vannier JP, Soria J, Soria C: Cerivastatin, an inhibitor of HMG-CoA reductase, inhibits urokinase/urokinase-receptor expression and MMP-9 secretion by peripheral blood monocytes--a possible protective mechanism against atherothrombosis. Thromb Haemost. 2000 Oct;84(4):680-8. [PubMed:11057870 ]
  4. Wong WW, Tan MM, Xia Z, Dimitroulakos J, Minden MD, Penn LZ: Cerivastatin triggers tumor-specific apoptosis with higher efficacy than lovastatin. Clin Cancer Res. 2001 Jul;7(7):2067-75. [PubMed:11448925 ]
  5. Denoyelle C, Vasse M, Korner M, Mishal Z, Ganne F, Vannier JP, Soria J, Soria C: Cerivastatin, an inhibitor of HMG-CoA reductase, inhibits the signaling pathways involved in the invasiveness and metastatic properties of highly invasive breast cancer cell lines: an in vitro study. Carcinogenesis. 2001 Aug;22(8):1139-48. [PubMed:11470741 ]
  6. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [PubMed:11752352 ]

Enzymes

Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
substrateinhibitorinducer
General Function:
Vitamin d3 25-hydroxylase activity
Specific Function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1'-hydroxylation and midazolam 4-hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiot...
Gene Name:
CYP3A4
Uniprot ID:
P08684
Molecular Weight:
57342.67 Da
References
  1. Neuvonen PJ, Niemi M, Backman JT: Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther. 2006 Dec;80(6):565-81. [PubMed:17178259 ]
  2. Cohen LH, van Leeuwen RE, van Thiel GC, van Pelt JF, Yap SH: Equally potent inhibitors of cholesterol synthesis in human hepatocytes have distinguishable effects on different cytochrome P450 enzymes. Biopharm Drug Dispos. 2000 Dec;21(9):353-64. [PubMed:11523064 ]
  3. Zhou SF, Zhou ZW, Yang LP, Cai JP: Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675. Epub 2009 Sep 1. [PubMed:19515014 ]
  4. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]
  5. Boberg M, Angerbauer R, Fey P, Kanhai WK, Karl W, Kern A, Ploschke J, Radtke M: Metabolism of cerivastatin by human liver microsomes in vitro. Characterization of primary metabolic pathways and of cytochrome P450 isozymes involved. Drug Metab Dispos. 1997 Mar;25(3):321-31. [PubMed:9172950 ]
  6. Wang JS, Neuvonen M, Wen X, Backman JT, Neuvonen PJ: Gemfibrozil inhibits CYP2C8-mediated cerivastatin metabolism in human liver microsomes. Drug Metab Dispos. 2002 Dec;30(12):1352-6. [PubMed:12433802 ]
  7. Drug Interactions: Cytochrome P450 Drug Interaction Table [Link]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
substrate
General Function:
Oxygen binding
Specific Function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP3A5
Uniprot ID:
P20815
Molecular Weight:
57108.065 Da
References
  1. Drug Interactions: Cytochrome P450 Drug Interaction Table [Link]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
substrate
General Function:
Oxygen binding
Specific Function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP3A7
Uniprot ID:
P24462
Molecular Weight:
57525.03 Da
References
  1. Drug Interactions: Cytochrome P450 Drug Interaction Table [Link]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
substrateinhibitor
General Function:
Steroid hydroxylase activity
Specific Function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. In the epoxidation of arachidonic acid it generates only 14,15- and 11,12-cis-epoxyeicosatrienoic acids. It is the principal enzyme...
Gene Name:
CYP2C8
Uniprot ID:
P10632
Molecular Weight:
55824.275 Da
References
  1. Neuvonen PJ, Niemi M, Backman JT: Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther. 2006 Dec;80(6):565-81. [PubMed:17178259 ]
  2. Zhou SF, Zhou ZW, Yang LP, Cai JP: Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675. Epub 2009 Sep 1. [PubMed:19515014 ]
  3. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]
  4. Wang JS, Neuvonen M, Wen X, Backman JT, Neuvonen PJ: Gemfibrozil inhibits CYP2C8-mediated cerivastatin metabolism in human liver microsomes. Drug Metab Dispos. 2002 Dec;30(12):1352-6. [PubMed:12433802 ]
  5. Drug Interactions: Cytochrome P450 Drug Interaction Table [Link]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
inhibitor
General Function:
Steroid hydroxylase activity
Specific Function:
Responsible for the metabolism of many drugs and environmental chemicals that it oxidizes. It is involved in the metabolism of drugs such as antiarrhythmics, adrenoceptor antagonists, and tricyclic antidepressants.
Gene Name:
CYP2D6
Uniprot ID:
P10635
Molecular Weight:
55768.94 Da
References
  1. Cohen LH, van Leeuwen RE, van Thiel GC, van Pelt JF, Yap SH: Equally potent inhibitors of cholesterol synthesis in human hepatocytes have distinguishable effects on different cytochrome P450 enzymes. Biopharm Drug Dispos. 2000 Dec;21(9):353-64. [PubMed:11523064 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
inhibitor
General Function:
Steroid hydroxylase activity
Specific Function:
Responsible for the metabolism of a number of therapeutic agents such as the anticonvulsant drug S-mephenytoin, omeprazole, proguanil, certain barbiturates, diazepam, propranolol, citalopram and imipramine.
Gene Name:
CYP2C19
Uniprot ID:
P33261
Molecular Weight:
55930.545 Da
References
  1. Cohen LH, van Leeuwen RE, van Thiel GC, van Pelt JF, Yap SH: Equally potent inhibitors of cholesterol synthesis in human hepatocytes have distinguishable effects on different cytochrome P450 enzymes. Biopharm Drug Dispos. 2000 Dec;21(9):353-64. [PubMed:11523064 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
inhibitorinducer
General Function:
Steroid hydroxylase activity
Specific Function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. This enzyme contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenyto...
Gene Name:
CYP2C9
Uniprot ID:
P11712
Molecular Weight:
55627.365 Da
References
  1. Cohen LH, van Leeuwen RE, van Thiel GC, van Pelt JF, Yap SH: Equally potent inhibitors of cholesterol synthesis in human hepatocytes have distinguishable effects on different cytochrome P450 enzymes. Biopharm Drug Dispos. 2000 Dec;21(9):353-64. [PubMed:11523064 ]
  2. Zhou SF, Zhou ZW, Yang LP, Cai JP: Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675. Epub 2009 Sep 1. [PubMed:19515014 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
inducer
General Function:
Steroid hydroxylase activity
Specific Function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,4-cineole 2-exo-monooxygenase.
Gene Name:
CYP2B6
Uniprot ID:
P20813
Molecular Weight:
56277.81 Da
References
  1. Zhou SF, Zhou ZW, Yang LP, Cai JP: Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675. Epub 2009 Sep 1. [PubMed:19515014 ]

Transporters

Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
substrate
General Function:
Xenobiotic-transporting atpase activity
Specific Function:
Energy-dependent efflux pump responsible for decreased drug accumulation in multidrug-resistant cells.
Gene Name:
ABCB1
Uniprot ID:
P08183
Molecular Weight:
141477.255 Da
References
  1. Matsushima S, Maeda K, Kondo C, Hirano M, Sasaki M, Suzuki H, Sugiyama Y: Identification of the hepatic efflux transporters of organic anions using double-transfected Madin-Darby canine kidney II cells expressing human organic anion-transporting polypeptide 1B1 (OATP1B1)/multidrug resistance-associated protein 2, OATP1B1/multidrug resistance 1, and OATP1B1/breast cancer resistance protein. J Pharmacol Exp Ther. 2005 Sep;314(3):1059-67. Epub 2005 May 18. [PubMed:15901800 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
substrate
General Function:
Organic anion transmembrane transporter activity
Specific Function:
Mediates hepatobiliary excretion of numerous organic anions. May function as a cellular cisplatin transporter.
Gene Name:
ABCC2
Uniprot ID:
Q92887
Molecular Weight:
174205.64 Da
References
  1. Matsushima S, Maeda K, Kondo C, Hirano M, Sasaki M, Suzuki H, Sugiyama Y: Identification of the hepatic efflux transporters of organic anions using double-transfected Madin-Darby canine kidney II cells expressing human organic anion-transporting polypeptide 1B1 (OATP1B1)/multidrug resistance-associated protein 2, OATP1B1/multidrug resistance 1, and OATP1B1/breast cancer resistance protein. J Pharmacol Exp Ther. 2005 Sep;314(3):1059-67. Epub 2005 May 18. [PubMed:15901800 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
substrate
General Function:
Xenobiotic-transporting atpase activity
Specific Function:
High-capacity urate exporter functioning in both renal and extrarenal urate excretion. Plays a role in porphyrin homeostasis as it is able to mediates the export of protoporhyrin IX (PPIX) both from mitochondria to cytosol and from cytosol to extracellular space, and cellular export of hemin, and heme. Xenobiotic transporter that may play an important role in the exclusion of xenobiotics from t...
Gene Name:
ABCG2
Uniprot ID:
Q9UNQ0
Molecular Weight:
72313.47 Da
References
  1. Matsushima S, Maeda K, Kondo C, Hirano M, Sasaki M, Suzuki H, Sugiyama Y: Identification of the hepatic efflux transporters of organic anions using double-transfected Madin-Darby canine kidney II cells expressing human organic anion-transporting polypeptide 1B1 (OATP1B1)/multidrug resistance-associated protein 2, OATP1B1/multidrug resistance 1, and OATP1B1/breast cancer resistance protein. J Pharmacol Exp Ther. 2005 Sep;314(3):1059-67. Epub 2005 May 18. [PubMed:15901800 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
substrate
General Function:
Sodium-independent organic anion transmembrane transporter activity
Specific Function:
Mediates the Na(+)-independent uptake of organic anions such as pravastatin, taurocholate, methotrexate, dehydroepiandrosterone sulfate, 17-beta-glucuronosyl estradiol, estrone sulfate, prostaglandin E2, thromboxane B2, leukotriene C3, leukotriene E4, thyroxine and triiodothyronine. Involved in the clearance of bile acids and organic anions from the liver.
Gene Name:
SLCO1B1
Uniprot ID:
Q9Y6L6
Molecular Weight:
76447.99 Da
References
  1. Matsushima S, Maeda K, Kondo C, Hirano M, Sasaki M, Suzuki H, Sugiyama Y: Identification of the hepatic efflux transporters of organic anions using double-transfected Madin-Darby canine kidney II cells expressing human organic anion-transporting polypeptide 1B1 (OATP1B1)/multidrug resistance-associated protein 2, OATP1B1/multidrug resistance 1, and OATP1B1/breast cancer resistance protein. J Pharmacol Exp Ther. 2005 Sep;314(3):1059-67. Epub 2005 May 18. [PubMed:15901800 ]
  2. Kameyama Y, Yamashita K, Kobayashi K, Hosokawa M, Chiba K: Functional characterization of SLCO1B1 (OATP-C) variants, SLCO1B1*5, SLCO1B1*15 and SLCO1B1*15+C1007G, by using transient expression systems of HeLa and HEK293 cells. Pharmacogenet Genomics. 2005 Jul;15(7):513-22. [PubMed:15970799 ]
Comments
comments powered by Disqus
Drug created on June 13, 2005 07:24 / Updated on September 16, 2013 17:10