Genome polyprotein

Details

Name
Genome polyprotein
Synonyms
  • 3.4.22.29
  • P2A
Gene Name
Not Available
Organism
E-1
Amino acid sequence
>lcl|BSEQ0017374|Genome polyprotein
MGAQVSTQKTGAHETSLSATGNSIIHYTNINYYKDAASNSANRQDFTQDPGKFTEPMKDV
MIKTLPALNSPTVEECGYSDRVRSITLGNSTITTQECANVVVGYGEWPEYLSDNEATAED
QPTQPDVATCRFYTLDSVQWENGSPGWWWKFPDALRDMGLFGQNMYYHYLGRAGYTIHVQ
CNASKFHQGCILVVCVPEAEMGSAQTSGVVNYEHISKGEIASRFTTTTTAEDHGVQAAVW
NAGMGVGVGNLTIFPHQWINLRTNNSATIVMPYVNSVPMDNMYRHHNFTLMIIPFVPLDF
SAGASTYVPITVTVAPMCAEYNGLRLAGHQGLPTMNTPGSNQFLTSDDFQSPSAMPQFDV
TPEMHIPGEVRNLMEIAEVDSVMPINNDSAAKVSSMEAYRVELSTNTNAGTQVFGFQLNP
GAESVMNRTLMGEILNYYAHWSGSIKITFVFCGSAMTTGKFLLSYAPPGAGAPKTRKDAM
LGTHVVWDVGLQSSCVLCIPWISQTHYRFVEKDPYTNAGFVTCWYQTSVVSPASNQPKCY
MMCMVSACNDFSVRMLRDTKFIEQTSFYQGDVQNAVEGAMVRVADTVQTSATNSERVPNL
TAVETGHTSQAVPGDTMQTRHVINNHVRSESTIENFLARSACVFYLEYKTGTKEDSNSFN
NWVITTRRVAQLRRKLEMFTYLRFDMEITVVITSSQDQSTSQNQNAPVLTHQIMYVPPGG
PIPVSVDDYSWQTSTNPSIFWTEGNAPARMSIPFISIGNAYSNFYDGWSHFSQAGVYGFT
TLNNMGQLFFRHVNKPNPAAITSVARIYFKPKHVRAWVPRPPRLCPYINSTNVNFEPKPV
TEVRTNIITTGAFGQQSGAVYVGNYRVVNRHLATHIDWQNCVWEDYNRDLLVSTTTAHGC
DTIARCQCTTGVYFCLSRNKHYPVSFEGPGLVEVQESEYYPKRYQSHVLLAAGFSEPGDC
GGILRCEHGVIGIVTMGGEGVVGFADVRDLLWLEDDAMEQGVKDYVEQLGNAFGSGFTNQ
ICEQVNLLKESLVGQDSILEKSLKALVKIISALVIVVRNHDDLITVTATLALIGCTSSPW
RWLKQKVSQYYGIPMAERQNNGWLKKFTEMTNACKGMEWIAIKIQKFIEWLKVKILPEVK
EKHEFLNRLKQLPLLESQIATIEQSAPSQGDQEQLFSNVQYFAHYCRKYAPLYAAEAKRV
FSLEKKMSNYIQFKSKCRIEPVCLLLHGSPGAGKSVATNLIGRSLAEKLNSSVYSLPPDP
DHFDGYKQQAVVIMDDLCQNPDGKDVSLFCQMVSSVDFVPPMAALEEKGILFTSPFVLAS
TNAGSINAPTVSDSRALARRFHFDMNIEVISMYSQNGKINMPMSVKTCDEDCCPVNFKKC
CPLVCGKAIQFIDRKTQVRYSLDMLVTEMFREYNHRHSVGATLEALFQGPPVYREIKISV
APETPPPPAIADLLKSVDSEAVREYCKEKGWLVPEISSTLQIEKHVSRAFICLQALTTFV
SVAGIIYIIYKLFAGFQGAYTGMPNQKPKVPTLRQAKVQGPAFEFAVAMMKRNASTVKTE
YGEFTMLGIYDRWAVLPRHAKPGPTILMNDQEVGVLDAKELVDKDGTNLELTLLKLNRNE
KFRDIRGFLAREEAEVNEAVLAINTSKFPNMYIPVGQVTDYGFLNLGGTPTKRMLMYNFP
TRAGQCGGVLMSTGKVLGIHVGGNGHQGFSAALLRHYFNEEQGEIEFIESSKDAGFPVIN
TPSKTKLEPSVFHQVFEGNKEPAVLRNGDPRLKVNFEEAIFSKYIGNVNTHVDEYMQEAV
DHYAGQLATLDISTEPMKLEDAVYGTEGLEALDLTTSAGYPYVALGIKKRDILSKKTKDL
TKLKECMDKYGLNLPMVTYVKDELRSAEKVAKGKSRLIEASSLNDSVAMRQTFGNLYKTF
HLNPGIVTGSAVGCDPDVFWSKIPVMLDGHLIAFDYSGYDASLSPVWFACLKLLLEKLGY
TNKETNYIDYLCNSHHLYRDKHYFVRGGMPSGCSGTSIFNSMINNIIIRTLMLKVYKGID
LDQFRMIAYGDDVIASYPWPIDASLLAEAGKDYGLIMTPADKGECFNEVTWTNVTFLKRY
FRADEQYPFLVHPVMPMKDIHESIRWTKDPKNTQDHVRSLCLLAWHNGEHEYEEFIRKIR
SVPVGRCLTLPAFSTLRRKWLDSF
Number of residues
2184
Molecular Weight
244002.735
Theoretical pI
6.72
GO Classification
Functions
ATP binding / cysteine-type endopeptidase activity / ion channel activity / RNA binding / RNA helicase activity / RNA-directed RNA polymerase activity / structural molecule activity
Processes
caveolin-mediated endocytosis of virus by host cell / DNA replication / induction by virus of host autophagy / pore formation by virus in membrane of host cell / pore-mediated entry of viral genome into host cell / positive stranded viral RNA replication / protein oligomerization / RNA-protein covalent cross-linking / suppression by virus of host gene expression / suppression by virus of host mRNA export from nucleus / suppression by virus of host RIG-I activity by RIG-I proteolysis / suppression by virus of host translation initiation factor activity / transcription, DNA-templated / viral RNA genome replication / virion attachment to host cell
Components
host cell cytoplasmic vesicle membrane / integral to membrane of host cell / membrane / T=pseudo3 icosahedral viral capsid
General Function
Structural molecule activity
Specific Function
Capsid protein VP1: Forms an icosahedral capsid of pseudo T=3 symmetry with capsid proteins VP2 and VP3. The capsid is 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome. Capsid protein VP1 mainly forms the vertices of the capsid. Capsid protein VP1 interacts with host integrin ITGA2/ITGB1 to provide virion attachment to target host cells. This attachment induces virion internalization. Tyrosine kinases are probably involved in the entry process. After binding to its receptor, the capsid undergoes conformational changes. Capsid protein VP1 N-terminus (that contains an amphipathic alpha-helix) and capsid protein VP4 are externalized. Together, they shape a pore in the host membrane through which viral genome is translocated to host cell cytoplasm. After genome has been released, the channel shrinks (By similarity).Capsid protein VP2: Forms an icosahedral capsid of pseudo T=3 symmetry with capsid proteins VP2 and VP3. The capsid is 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome (By similarity).Capsid protein VP3: Forms an icosahedral capsid of pseudo T=3 symmetry with capsid proteins VP2 and VP3. The capsid is 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome (By similarity).Capsid protein VP4: Lies on the inner surface of the capsid shell. After binding to the host receptor, the capsid undergoes conformational changes. Capsid protein VP4 is released, Capsid protein VP1 N-terminus is externalized, and together, they shape a pore in the host membrane through which the viral genome is translocated into the host cell cytoplasm. After genome has been released, the channel shrinks (By similarity).Capsid protein VP0: Component of immature procapsids, which is cleaved into capsid proteins VP4 and VP2 after maturation. Allows the capsid to remain inactive before the maturation step (By similarity).Protein 2A: Cysteine protease that cleaves viral polyprotein and specific host proteins. It is responsible for the cleavage between the P1 and P2 regions, first cleavage occurring in the polyprotein. Cleaves also the host translation initiation factor EIF4G1, in order to shut down the capped cellular mRNA translation. Inhibits the host nucleus-cytoplasm protein and RNA trafficking by cleaving host members of the nuclear pores (By similarity).Protein 2B: Plays an essential role in the virus replication cycle by acting as a viroporin. Creates a pore in the host reticulum endoplasmic and as a consequence releases Ca2+ in the cytoplasm of infected cell. In turn, high levels of cyctoplasmic calcium may trigger membrane trafficking and transport of viral ER-associated proteins to viroplasms, sites of viral genome replication (By similarity).Protein 2C: Induces and associates with structural rearrangements of intracellular membranes. Displays RNA-binding, nucleotide binding and NTPase activities. May play a role in virion morphogenesis and viral RNA encapsidation by interacting with the capsid protein VP3 (By similarity).Protein 3AB: Localizes the viral replication complex to the surface of membranous vesicles. Together with protein 3CD binds the Cis-Active RNA Element (CRE) which is involved in RNA synthesis initiation. Acts as a cofactor to stimulate the activity of 3D polymerase, maybe through a nucleid acid chaperone activity (By similarity).Protein 3A: Localizes the viral replication complex to the surface of membranous vesicles. It inhibits host cell endoplasmic reticulum-to-Golgi apparatus transport and causes the dissassembly of the Golgi complex, possibly through GBF1 interaction. This would result in depletion of MHC, trail receptors and IFN receptors at the host cell surface (By similarity).Viral protein genome-linked: acts as a primer for viral RNA replication and remains covalently bound to viral genomic RNA. VPg is uridylylated prior to priming replication into VPg-pUpU. The oriI viral genomic sequence may act as a template for this. The VPg-pUpU is then used as primer on the genomic RNA poly(A) by the RNA-dependent RNA polymerase to replicate the viral genome. VPg may be removed in the cytoplasm by an unknown enzyme termed "unlinkase". VPg is not cleaved off virion genomes because replicated genomic RNA are encapsidated at the site of replication (By similarity).Protein 3CD: Is involved in the viral replication complex and viral polypeptide maturation. It exhibits protease activity with a specificity and catalytic efficiency that is different from protease 3C. Protein 3CD lacks polymerase activity. The 3C domain in the context of protein 3CD may have an RNA binding activity (By similarity).Protease 3C: cleaves host DDX58/RIG-I and thus contributes to the inhibition of type I interferon production. Cleaves also host PABPC1 (By similarity).RNA-directed RNA polymerase: Replicates the viral genomic RNA on the surface of intracellular membranes. May form linear arrays of subunits that propagate along a strong head-to-tail interaction called interface-I. Covalently attaches UMP to a tyrosine of VPg, which is used to prime RNA synthesis. The positive stranded RNA genome is first replicated at virus induced membranous vesicles, creating a dsRNA genomic replication form. This dsRNA is then used as template to synthesize positive stranded RNA genomes. ss(+)RNA genomes are either translated, replicated or encapsidated (By similarity).
Pfam Domain Function
Transmembrane Regions
Not Available
Cellular Location
Virion
Gene sequence
>lcl|BSEQ0008045|6555 bp
ATGGGAGCACAGGTATCAACACAGAAGACCGGGGCGCACGAGACTAGCTTGAGCGCTACT
GGCAACTCCATAATACACTACACGAATATTAATTATTACAAAGATGCAGCCTCTAACTCT
GCCAATAGACAAGATTTCACCCAAGACCCTGGTAAGTTTACTGAACCAATGAAAGATGTC
ATGATAAAAACCCTGCCAGCGCTGAATTCTCCAACGGTTGAAGAGTGCGGGTACAGTGAC
AGGGTCAGGTCAATCACACTTGGGAACTCCACTATTACAACTCAAGAGTGTGCCAATGTG
GTGGTGGGGTACGGTGAATGGCCTGAGTATCTGAGTGATAACGAGGCAACTGCTGAGGAC
CAACCAACGCAGCCGGACGTGGCCACTTGCCGTTTTTACACCCTAGACTCAGTCCAATGG
GAGAATGGGTCACCAGGTTGGTGGTGGAAGTTTCCCGACGCTCTAAGGGATATGGGATTA
TTTGGCCAAAATATGTACTACCATTACTTAGGCAGAGCCGGGTATACCATCCACGTACAA
TGCAATGCTTCCAAGTTTCATCAAGGCTGTATCCTGGTAGTGTGTGTCCCTGAGGCGGAG
ATGGGAAGTGCCCAAACCTCAGGGGTGGTCAACTACGAACACATTAGTAAGGGTGAGATC
GCATCAAGGTTCACTACCACGACAACAGCAGAAGACCATGGCGTGCAGGCCGCGGTATGG
AATGCTGGTATGGGCGTTGGAGTTGGGAACTTGACGATCTTCCCGCACCAATGGATCAAC
CTTCGCACCAACAACAGCGCCACAATTGTTATGCCATACGTAAATAGTGTACCAATGGAC
AATATGTATAGACATCACAACTTTACACTAATGATAATACCCTTTGTGCCTCTGGATTTC
AGCGCGGGTGCATCCACATACGTGCCCATAACGGTGACAGTGGCCCCCATGTGTGCCGAG
TACAATGGACTACGACTAGCTGGACACCAAGGACTACCGACCATGAACACCCCTGGCAGC
AACCAATTTCTTACATCGGACGATTTCCAATCCCCGTCAGCGATGCCTCAATTTGATGTA
ACTCCAGAAATGCACATCCCTGGTGAGGTGCGCAACCTCATGGAAATTGCCGAAGTTGAT
TCTGTAATGCCAATTAACAATGATAGCGCCGCAAAAGTTTCATCCATGGAGGCTTATAGA
GTCGAATTGAGCACCAACACTAATGCCGGGACTCAAGTGTTTGGCTTTCAACTGAACCCC
GGAGCGGAATCAGTAATGAACCGCACATTAATGGGTGAAATCCTAAATTACTACGCACAC
TGGTCAGGAAGCATAAAGATAACATTCGTGTTCTGTGGTTCTGCCATGACCACTGGCAAG
TTTCTGCTGTCTTACGCCCCACCAGGTGCAGGTGCGCCAAAAACTCGCAAGGATGCCATG
TTAGGCACTCATGTGGTGTGGGATGTTGGGCTCCAATCCAGCTGCGTGTTATGCATCCCC
TGGATTAGTCAAACCCATTACAGATTTGTGGAAAAGGATCCATACACCAATGCCGGGTTT
GTGACATGTTGGTATCAGACCAGTGTAGTGTCCCCAGCGAGCAACCAGCCAAAGTGTTAT
ATGATGTGCATGGTTTCTGCGTGTAATGACTTCTCAGTTCGCATGTTGAGAGATACCAAG
TTCATTGAGCAAACATCTTTTTACCAAGGTGATGTGCAGAATGCTGTCGAAGGGGCTATG
GTCAGGGTGGCAGATACAGTGCAAACTTCAGCCACAAACTCAGAGAGGGTGCCTAACTTG
ACAGCAGTAGAAACTGGTCACACTTCGCAGGCAGTACCTGGTGATACCATGCAGACTAGA
CATGTGATCAACAATCACGTGAGGTCAGAATCTACAATTGAGAACTTCCTTGCCAGATCA
GCGTGTGTTTTCTACCTAGAGTACAAGACAGGGACCAAAGAGGATTCCAATAGCTTCAAC
AATTGGGTGATTACAACCAGGCGAGTGGCTCAACTACGTAGAAAACTGGAAATGTTTACT
TACCTACGGTTTGACATGGAAATCACCGTGGTCATTACAAGCTCGCAAGATCAGTCTACA
TCACAAAACCAGAATGCACCAGTGCTAACACACCAGATAATGTATGTACCACCAGGGGGA
CCCATACCCGTAAGCGTGGATGATTACAGCTGGCAAACATCCACCAACCCCAGTATCTTT
TGGACCGAAGGGAACGCTCCGGCACGCATGTCAATTCCATTTATTAGCATAGGCAATGCG
TATAGTAATTTCTACGATGGGTGGTCTCACTTCTCCCAGGCTGGCGTGTATGGCTTCACT
ACTCTGAACAACATGGGTCAATTGTTCTTCCGGCACGTAAACAAGCCCAACCCAGCCGCT
ATTACAAGTGTGGCGCGCATTTACTTCAAACCGAAACATGTACGCGCTTGGGTGCCTAGA
CCACCGCGCTTGTGTCCATACATCAATAGCACGAATGTCAACTTTGAACCCAAGCCAGTG
ACTGAAGTACGTACCAACATAATAACAACGGGTGCCTTTGGGCAGCAATCTGGCGCAGTG
TACGTGGGCAACTACAGAGTGGTCAATAGGCACTTGGCGACTCACATTGATTGGCAAAAC
TGTGTATGGGAGGACTATAACAGGGATCTACTGGTCAGCACAACTACAGCTCATGGGTGC
GACACCATAGCTAGGTGCCAGTGCACGACAGGGGTGTACTTCTGCCTGAGCAGAAACAAA
CACTACCCAGTGTCATTTGAAGGTCCAGGATTGGTTGAGGTTCAAGAGAGTGAGTATTAC
CCAAAAAGGTACCAATCCCACGTGCTTCTTGCAGCCGGATTTTCTGAACCTGGAGATTGT
GGTGGTATCTTGAGGTGTGAGCATGGTGTTATTGGTATAGTGACCATGGGAGGTGAAGGT
GTCGTTGGTTTCGCCGATGTGCGAGACCTTCTATGGCTAGAGGATGACGCCATGGAGCAG
GGAGTCAAGGACTACGTGGAACAGCTCGGCAACGCCTTTGGTTCAGGTTTCACCAATCAG
ATTTGTGAGCAGGTCAATCTCCTGAAAGAGTCCTTGGTAGGTCAAGACTCCATCTTGGAA
AAGTCTTTAAAAGCACTAGTAAAAATCATATCAGCATTAGTGATCGTGGTAAGGAACCAC
GACGACTTGATCACAGTGACTGCTACACTAGCCCTCATTGGCTGCACCTCTTCACCATGG
CGATGGCTCAAGCAGAAGGTATCACAATATTATGGAATACCCATGGCCGAGCGTCAGAAC
AATGGATGGCTCAAGAAATTCACTGAGATGACTAACGCCTGCAAAGGCATGGAGTGGATT
GCCATTAAAATTCAGAAATTTATTGAATGGCTGAAAGTTAAGATTCTACCTGAAGTAAAA
GAAAAACATGAATTTCTCAATAGATTAAAACAGCTGCCACTTCTTGAAAGTCAGATTGCT
ACCATAGAACAGAGCGCACCATCACAAGGTGACCAAGAACAGCTCTTCTCCAATGTGCAG
TATTTTGCCCACTATTGCAGAAAGTACGCACCTCTGTATGCCGCCGAAGCAAAAAGAGTG
TTCTCGTTGGAGAAAAAGATGAGCAACTACATACAGTTCAAGTCCAAATGCCGTATTGAG
CCTGTATGTTTACTTCTCCATGGCAGCCCAGGAGCGGGGAAATCCGTGGCTACAAACCTA
ATTGGTAGATCCCTCGCGGAGAAACTTAACAGCTCTGTGTACTCGTTACCACCAGACCCA
GATCATTTTGATGGATACAAACAACAAGCCGTAGTGATCATGGATGACCTGTGCCAGAAT
CCAGATGGGAAGGATGTGTCACTATTCTGTCAAATGGTATCCAGCGTGGACTTCGTACCA
CCCATGGCAGCTCTGGAGGAGAAAGGGATTCTTTTCACGTCCCCGTTTGTGCTAGCATCA
ACCAATGCGGGGTCTATCAATGCACCCACTGTGTCTGACAGCAGGGCACTTGCCAGAAGG
TTCCACTTTGATATGAACATCGAGGTGATCTCCATGTATAGCCAGAATGGGAAGATTAAC
ATGCCCATGTCTGTCAAAACATGTGATGAGGATTGCTGCCCGGTCAATTTCAAGAAATGC
TGCCCGCTGGTGTGTGGTAAGGCCATTCAATTTATTGACAGAAAGACCCAAGTTAGGTAT
TCACTGGACATGTTGGTCACCGAGATGTTCAGGGAGTACAACCACAGACACAGCGTGGGT
GCCACCCTCGAGGCTTTGTTCCAAGGGCCACCGGTCTACAGGGAGATTAAGATCAGTGTC
GCTCCAGAAACACCCCCTCCACCAGCAATCGCTGACCTGCTAAAATCAGTAGACAGTGAG
GCAGTAAGGGAGTACTGCAAGGAAAAAGGCTGGCTTGTGCCGGAAATTAGCTCCACCCTA
CAGATTGAGAAGCACGTCAGTAGAGCATTTATCTGCCTACAGGCTCTGACTACATTTGTC
TCAGTAGCTGGCATAATCTACATTATCTACAAATTGTTTGCCGGTTTTCAGGGCGCGTAT
ACGGGGATGCCAAATCAGAAACCCAAGGTGCCCACTCTGAGACAGGCTAAGGTGCAGGGC
CCGGCATTCGAGTTCGCCGTGGCGATGATGAAGAGAAACGCCAGCACAGTGAAAACAGAA
TATGGTGAGTTCACCATGCTCGGCATCTATGACAGATGGGCAGTGTTACCACGCCACGCC
AAGCCCGGACCGACCATCTTAATGAATGATCAGGAGGTCGGTGTGCTAGATGCCAAAGAA
TTGGTTGACAAAGATGGGACAAATCTGGAGTTGACTCTCCTAAAGCTCAATCGCAATGAG
AAGTTTAGGGATATCAGAGGGTTTCTGGCAAGAGAAGAAGCTGAGGTGAATGAGGCTGTT
TTGGCAATAAACACAAGCAAGTTCCCCAACATGTACATACCCGTAGGTCAAGTCACCGAC
TACGGTTTTCTGAACTTGGGAGGAACGCCCACAAAGAGGATGCTCATGTACAATTTCCCA
ACTAGAGCAGGCCAATGTGGCGGTGTCCTCATGTCAACAGGGAAGGTTCTAGGAATACAT
GTAGGCGGAAATGGACACCAAGGATTCTCTGCTGCCCTCCTTAGACATTACTTCAATGAG
GAACAAGGTGAGATAGAATTCATTGAGAGCTCAAAGGACGCAGGCTTCCCTGTGATCAAC
ACCCCCAGCAAAACCAAGCTGGAACCAAGCGTGTTTCACCAGGTGTTTGAGGGCAACAAA
GAGCCGGCAGTGCTTAGAAATGGGGATCCACGACTCAAGGTCAACTTTGAGGAGGCAATC
TTCTCCAAGTACATTGGCAATGTTAACACCCACGTGGACGAATACATGCAAGAGGCCGTG
GACCATTATGCAGGGCAGCTAGCTACACTGGACATCAGCACAGAGCCCATGAAACTGGAG
GATGCCGTGTATGGTACAGAGGGGCTGGAAGCACTAGACCTAACCACCAGTGCAGGCTAT
CCGTACGTGGCCCTAGGTATCAAGAAAAGAGACATTCTCTCTAAGAAGACCAAAGACCTT
ACCAAGTTGAAGGAATGCATGGACAAGTATGGCCTAAACTTACCAATGGTAACTTACGTC
AAAGATGAATTAAGATCTGCCGAGAAGGTAGCCAAGGGAAAGTCCAGACTTATTGAGGCC
TCCAGTCTCAATGACTCAGTAGCAATGAGGCAAACATTTGGAAACCTGTACAAAACCTTT
CATCTCAATCCGGGCATTGTCACGGGCAGTGCTGTTGGGTGTGACCCAGATGTATTTTGG
AGTAAGATCCCTGTCATGCTTGATGGACATCTCATAGCTTTTGACTATTCAGGTTATGAC
GCCAGTCTCAGCCCGGTGTGGTTTGCATGTCTGAAACTCCTCCTAGAGAAACTAGGGTAT
ACGAATAAGGAAACAAACTACATAGATTACCTCTGCAACTCTCACCACTTATATAGGGAC
AAGCACTACTTTGTGAGAGGCGGTATGCCATCAGGATGTTCGGGCACTAGCATATTTAAT
TCCATGATTAACAACATTATAATCAGGACTCTCATGCTGAAAGTTTATAAAGGCATTGAT
TTGGACCAATTCAGAATGATCGCTTATGGGGATGATGTGATTGCCTCCTACCCGTGGCCC
ATCGATGCGTCACTGTTAGCTGAAGCAGGAAAAGATTATGGATTGATCATGACCCCAGCA
GACAAAGGTGAGTGCTTTAATGAGGTAACCTGGACAAATGTGACCTTTTTGAAAAGGTAC
TTCAGAGCAGATGAACAGTACCCATTCCTGGTCCATCCTGTTATGCCAATGAAGGACATA
CATGAGTCCATTAGATGGACTAAAGACCCCAAAAACACACAGGATCACGTGCGCTCGCTG
TGCCTATTGGCTTGGCACAACGGGGAGCACGAATATGAGGAGTTTATTCGCAAGATCAGA
AGCGTGCCCGTCGGGCGCTGCTTGACCCTTCCTGCATTTTCGACACTGCGTAGGAAGTGG
TTGGACTCCTTCTAA
Chromosome Location
Not Available
Locus
Not Available
External Identifiers
ResourceLink
UniProtKB IDO91734
UniProtKB Entry NamePOLG_EC01F
GenBank Protein ID7408184
GenBank Gene IDAF029859
General References
  1. Huttunen P, Santti J, Pulli T, Hyypia T: The major echovirus group is genetically coherent and related to coxsackie B viruses. J Gen Virol. 1996 Apr;77 ( Pt 4):715-25. [Article]
  2. Oberste MS, Maher K, Kilpatrick DR, Pallansch MA: Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification. J Virol. 1999 Mar;73(3):1941-8. [Article]
  3. Bergelson JM, St John N, Kawaguchi S, Chan M, Stubdal H, Modlin J, Finberg RW: Infection by echoviruses 1 and 8 depends on the alpha 2 subunit of human VLA-2. J Virol. 1993 Nov;67(11):6847-52. [Article]
  4. Marjomaki V, Pietiainen V, Matilainen H, Upla P, Ivaska J, Nissinen L, Reunanen H, Huttunen P, Hyypia T, Heino J: Internalization of echovirus 1 in caveolae. J Virol. 2002 Feb;76(4):1856-65. [Article]
  5. Pietiainen V, Marjomaki V, Upla P, Pelkmans L, Helenius A, Hyypia T: Echovirus 1 endocytosis into caveosomes requires lipid rafts, dynamin II, and signaling events. Mol Biol Cell. 2004 Nov;15(11):4911-25. Epub 2004 Sep 8. [Article]
  6. Filman DJ, Wien MW, Cunningham JA, Bergelson JM, Hogle JM: Structure determination of echovirus 1. Acta Crystallogr D Biol Crystallogr. 1998 Nov 1;54(Pt 6 Pt 2):1261-72. [Article]

Drug Relations

Drug Relations
DrugBank IDNameDrug groupPharmacological action?ActionsDetails
DB08231Myristic acidexperimentalunknownDetails