Transferrin receptor protein 1

Details

Name
Transferrin receptor protein 1
Synonyms
  • p90
  • T9
  • TR
Gene Name
TFRC
Organism
Humans
Amino acid sequence
>lcl|BSEQ0008640|Transferrin receptor protein 1
MMDQARSAFSNLFGGEPLSYTRFSLARQVDGDNSHVEMKLAVDEEENADNNTKANVTKPK
RCSGSICYGTIAVIVFFLIGFMIGYLGYCKGVEPKTECERLAGTESPVREEPGEDFPAAR
RLYWDDLKRKLSEKLDSTDFTGTIKLLNENSYVPREAGSQKDENLALYVENQFREFKLSK
VWRDQHFVKIQVKDSAQNSVIIVDKNGRLVYLVENPGGYVAYSKAATVTGKLVHANFGTK
KDFEDLYTPVNGSIVIVRAGKITFAEKVANAESLNAIGVLIYMDQTKFPIVNAELSFFGH
AHLGTGDPYTPGFPSFNHTQFPPSRSSGLPNIPVQTISRAAAEKLFGNMEGDCPSDWKTD
STCRMVTSESKNVKLTVSNVLKEIKILNIFGVIKGFVEPDHYVVVGAQRDAWGPGAAKSG
VGTALLLKLAQMFSDMVLKDGFQPSRSIIFASWSAGDFGSVGATEWLEGYLSSLHLKAFT
YINLDKAVLGTSNFKVSASPLLYTLIEKTMQNVKHPVTGQFLYQDSNWASKVEKLTLDNA
AFPFLAYSGIPAVSFCFCEDTDYPYLGTTMDTYKELIERIPELNKVARAAAEVAGQFVIK
LTHDVELNLDYERYNSQLLSFVRDLNQYRADIKEMGLSLQWLYSARGDFFRATSRLTTDF
GNAEKTDRFVMKKLNDRVMRVEYHFLSPYVSPKESPFRHVFWGSGSHTLPALLENLKLRK
QNNGAFNETLFRNQLALATWTIQGAANALSGDVWDIDNEF
Number of residues
760
Molecular Weight
84870.665
Theoretical pI
Not Available
GO Classification
Functions
double-stranded RNA binding / glycoprotein binding / identical protein binding / poly(A) RNA binding / protein homodimerization activity / transferrin receptor activity / transferrin transmembrane transporter activity / virus receptor activity
Processes
acute-phase response / aging / cellular iron ion homeostasis / cellular response to drug / iron ion import / osteoclast differentiation / positive regulation of bone resorption / response to copper ion / response to hypoxia / response to iron ion / response to manganese ion / response to nutrient / response to retinoic acid / transferrin transport / transmembrane transport
Components
basolateral plasma membrane / blood microparticle / cell surface / coated pit / cytoplasmic membrane-bounded vesicle / endosome / external side of plasma membrane / extracellular exosome / extracellular region / extracellular space / extracellular vesicle / HFE-transferrin receptor complex / integral component of plasma membrane / intracellular membrane-bounded organelle / melanosome / membrane / mitochondrion / perinuclear region of cytoplasm / plasma membrane / recycling endosome / recycling endosome membrane
General Function
Virus receptor activity
Specific Function
Cellular uptake of iron occurs via receptor-mediated endocytosis of ligand-occupied transferrin receptor into specialized endosomes. Endosomal acidification leads to iron release. The apotransferrin-receptor complex is then recycled to the cell surface with a return to neutral pH and the concomitant loss of affinity of apotransferrin for its receptor. Transferrin receptor is necessary for development of erythrocytes and the nervous system (By similarity). A second ligand, the heditary hemochromatosis protein HFE, competes for binding with transferrin for an overlapping C-terminal binding site.(Microbial infection) Acts as a receptor for new-world arenaviruses: Guanarito, Junin and Machupo virus.
Pfam Domain Function
Transmembrane Regions
68-88
Cellular Location
Cell membrane
Gene sequence
>lcl|BSEQ0017537|Transferrin receptor protein 1 (TFRC)
ATGATGGATCAAGCTAGATCAGCATTCTCTAACTTGTTTGGTGGAGAACCATTGTCATAT
ACCCGGTTCAGCCTGGCTCGGCAAGTAGATGGCGATAACAGTCATGTGGAGATGAAACTT
GCTGTAGATGAAGAAGAAAATGCTGACAATAACACAAAGGCCAATGTCACAAAACCAAAA
AGGTGTAGTGGAAGTATCTGCTATGGGACTATTGCTGTGATCGTCTTTTTCTTGATTGGA
TTTATGATTGGCTACTTGGGCTATTGTAAAGGGGTAGAACCAAAAACTGAGTGTGAGAGA
CTGGCAGGAACCGAGTCTCCAGTGAGGGAGGAGCCAGGAGAGGACTTCCCTGCAGCACGT
CGCTTATATTGGGATGACCTGAAGAGAAAGTTGTCGGAGAAACTGGACAGCACAGACTTC
ACCGGCACCATCAAGCTGCTGAATGAAAATTCATATGTCCCTCGTGAGGCTGGATCTCAA
AAAGATGAAAATCTTGCGTTGTATGTTGAAAATCAATTTCGTGAATTTAAACTCAGCAAA
GTCTGGCGTGATCAACATTTTGTTAAGATTCAGGTCAAAGACAGCGCTCAAAACTCGGTG
ATCATAGTTGATAAGAACGGTAGACTTGTTTACCTGGTGGAGAATCCTGGGGGTTATGTG
GCGTATAGTAAGGCTGCAACAGTTACTGGTAAACTGGTCCATGCTAATTTTGGTACTAAA
AAAGATTTTGAGGATTTATACACTCCTGTGAATGGATCTATAGTGATTGTCAGAGCAGGG
AAAATCACCTTTGCAGAAAAGGTTGCAAATGCTGAAAGCTTAAATGCAATTGGTGTGTTG
ATATACATGGACCAGACTAAATTTCCCATTGTTAACGCAGAACTTTCATTCTTTGGACAT
GCTCATCTGGGGACAGGTGACCCTTACACACCTGGATTCCCTTCCTTCAATCACACTCAG
TTTCCACCATCTCGGTCATCAGGATTGCCTAATATACCTGTCCAGACAATCTCCAGAGCT
GCTGCAGAAAAGCTGTTTGGGAATATGGAAGGAGACTGTCCCTCTGACTGGAAAACAGAC
TCTACATGTAGGATGGTAACCTCAGAAAGCAAGAATGTGAAGCTCACTGTGAGCAATGTG
CTGAAAGAGATAAAAATTCTTAACATCTTTGGAGTTATTAAAGGCTTTGTAGAACCAGAT
CACTATGTTGTAGTTGGGGCCCAGAGAGATGCATGGGGCCCTGGAGCTGCAAAATCCGGT
GTAGGCACAGCTCTCCTATTGAAACTTGCCCAGATGTTCTCAGATATGGTCTTAAAAGAT
GGGTTTCAGCCCAGCAGAAGCATTATCTTTGCCAGTTGGAGTGCTGGAGACTTTGGATCG
GTTGGTGCCACTGAATGGCTAGAGGGATACCTTTCGTCCCTGCATTTAAAGGCTTTCACT
TATATTAATCTGGATAAAGCGGTTCTTGGTACCAGCAACTTCAAGGTTTCTGCCAGCCCA
CTGTTGTATACGCTTATTGAGAAAACAATGCAAAATGTGAAGCATCCGGTTACTGGGCAA
TTTCTATATCAGGACAGCAACTGGGCCAGCAAAGTTGAGAAACTCACTTTAGACAATGCT
GCTTTCCCTTTCCTTGCATATTCTGGAATCCCAGCAGTTTCTTTCTGTTTTTGCGAGGAC
ACAGATTATCCTTATTTGGGTACCACCATGGACACCTATAAGGAACTGATTGAGAGGATT
CCTGAGTTGAACAAAGTGGCACGAGCAGCTGCAGAGGTCGCTGGTCAGTTCGTGATTAAA
CTAACCCATGATGTTGAATTGAACCTGGACTATGAGAGGTACAACAGCCAACTGCTTTCA
TTTGTGAGGGATCTGAACCAATACAGAGCAGACATAAAGGAAATGGGCCTGAGTTTACAG
TGGCTGTATTCTGCTCGTGGAGACTTCTTCCGTGCTACTTCCAGACTAACAACAGATTTC
GGGAATGCTGAGAAAACAGACAGATTTGTCATGAAGAAACTCAATGATCGTGTCATGAGA
GTGGAGTATCACTTCCTCTCTCCCTACGTATCTCCAAAAGAGTCTCCTTTCCGACATGTC
TTCTGGGGCTCCGGCTCTCACACGCTGCCAGCTTTACTGGAGAACTTGAAACTGCGTAAA
CAAAATAACGGTGCTTTTAATGAAACGCTGTTCAGAAACCAGTTGGCTCTAGCTACTTGG
ACTATTCAGGGAGCTGCAAATGCCCTCTCTGGTGACGTTTGGGACATTGACAATGAGTTT
TAA
Chromosome Location
3
Locus
Not Available
External Identifiers
ResourceLink
UniProtKB IDP02786
UniProtKB Entry NameTFR1_HUMAN
HGNC IDHGNC:11763
General References
  1. Schneider C, Owen MJ, Banville D, Williams JG: Primary structure of human transferrin receptor deduced from the mRNA sequence. Nature. 1984 Oct 18-24;311(5987):675-8. [Article]
  2. McClelland A, Kuhn LC, Ruddle FH: The human transferrin receptor gene: genomic organization, and the complete primary structure of the receptor deduced from a cDNA sequence. Cell. 1984 Dec;39(2 Pt 1):267-74. [Article]
  3. Evans P, Kemp J: Exon/intron structure of the human transferrin receptor gene. Gene. 1997 Oct 15;199(1-2):123-31. [Article]
  4. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. [Article]
  5. Shih YJ, Baynes RD, Hudson BG, Flowers CH, Skikne BS, Cook JD: Serum transferrin receptor is a truncated form of tissue receptor. J Biol Chem. 1990 Nov 5;265(31):19077-81. [Article]
  6. Baynes RD, Shih YJ, Hudson BG, Cook JD: Characterization of transferrin receptor released by K562 erythroleukemia cells. Proc Soc Exp Biol Med. 1991 Sep;197(4):416-23. [Article]
  7. Coppolino M, Migliorini M, Argraves WS, Dedhar S: Identification of a novel form of the alpha 3 integrin subunit: covalent association with transferrin receptor. Biochem J. 1995 Feb 15;306 ( Pt 1):129-34. [Article]
  8. Chicz RM, Urban RG, Lane WS, Gorga JC, Stern LJ, Vignali DA, Strominger JL: Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size. Nature. 1992 Aug 27;358(6389):764-8. [Article]
  9. Rothenberger S, Iacopetta BJ, Kuhn LC: Endocytosis of the transferrin receptor requires the cytoplasmic domain but not its phosphorylation site. Cell. 1987 May 8;49(3):423-31. [Article]
  10. Jing SQ, Trowbridge IS: Identification of the intermolecular disulfide bonds of the human transferrin receptor and its lipid-attachment site. EMBO J. 1987 Feb;6(2):327-31. [Article]
  11. Alvarez E, Girones N, Davis RJ: Intermolecular disulfide bonds are not required for the expression of the dimeric state and functional activity of the transferrin receptor. EMBO J. 1989 Aug;8(8):2231-40. [Article]
  12. Alvarez E, Girones N, Davis RJ: A point mutation in the cytoplasmic domain of the transferrin receptor inhibits endocytosis. Biochem J. 1990 Apr 1;267(1):31-5. [Article]
  13. Jing SQ, Spencer T, Miller K, Hopkins C, Trowbridge IS: Role of the human transferrin receptor cytoplasmic domain in endocytosis: localization of a specific signal sequence for internalization. J Cell Biol. 1990 Feb;110(2):283-94. [Article]
  14. Do SI, Cummings RD: Presence of O-linked oligosaccharide on a threonine residue in the human transferrin receptor. Glycobiology. 1992 Aug;2(4):345-53. [Article]
  15. Hayes GR, Enns CA, Lucas JJ: Identification of the O-linked glycosylation site of the human transferrin receptor. Glycobiology. 1992 Aug;2(4):355-9. [Article]
  16. Collawn JF, Lai A, Domingo D, Fitch M, Hatton S, Trowbridge IS: YTRF is the conserved internalization signal of the transferrin receptor, and a second YTRF signal at position 31-34 enhances endocytosis. J Biol Chem. 1993 Oct 15;268(29):21686-92. [Article]
  17. Hayes GR, Williams A, Costello CE, Enns CA, Lucas JJ: The critical glycosylation site of human transferrin receptor contains a high-mannose oligosaccharide. Glycobiology. 1995 Mar;5(2):227-32. [Article]
  18. Buchegger F, Trowbridge IS, Liu LF, White S, Collawn JF: Functional analysis of human/chicken transferrin receptor chimeras indicates that the carboxy-terminal region is important for ligand binding. Eur J Biochem. 1996 Jan 15;235(1-2):9-17. [Article]
  19. Dubljevic V, Sali A, Goding JW: A conserved RGD (Arg-Gly-Asp) motif in the transferrin receptor is required for binding to transferrin. Biochem J. 1999 Jul 1;341 ( Pt 1):11-4. [Article]
  20. West AP Jr, Giannetti AM, Herr AB, Bennett MJ, Nangiana JS, Pierce JR, Weiner LP, Snow PM, Bjorkman PJ: Mutational analysis of the transferrin receptor reveals overlapping HFE and transferrin binding sites. J Mol Biol. 2001 Oct 19;313(2):385-97. [Article]
  21. Tosoni D, Puri C, Confalonieri S, Salcini AE, De Camilli P, Tacchetti C, Di Fiore PP: TTP specifically regulates the internalization of the transferrin receptor. Cell. 2005 Dec 2;123(5):875-88. [Article]
  22. Liu T, Qian WJ, Gritsenko MA, Camp DG 2nd, Monroe ME, Moore RJ, Smith RD: Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J Proteome Res. 2005 Nov-Dec;4(6):2070-80. [Article]
  23. Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD, Comb MJ: Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol. 2005 Jan;23(1):94-101. Epub 2004 Dec 12. [Article]
  24. Chi A, Valencia JC, Hu ZZ, Watabe H, Yamaguchi H, Mangini NJ, Huang H, Canfield VA, Cheng KC, Yang F, Abe R, Yamagishi S, Shabanowitz J, Hearing VJ, Wu C, Appella E, Hunt DF: Proteomic and bioinformatic characterization of the biogenesis and function of melanosomes. J Proteome Res. 2006 Nov;5(11):3135-44. [Article]
  25. Radoshitzky SR, Abraham J, Spiropoulou CF, Kuhn JH, Nguyen D, Li W, Nagel J, Schmidt PJ, Nunberg JH, Andrews NC, Farzan M, Choe H: Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature. 2007 Mar 1;446(7131):92-6. Epub 2007 Feb 7. [Article]
  26. Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP: A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10762-7. doi: 10.1073/pnas.0805139105. Epub 2008 Jul 31. [Article]
  27. Radoshitzky SR, Kuhn JH, Spiropoulou CF, Albarino CG, Nguyen DP, Salazar-Bravo J, Dorfman T, Lee AS, Wang E, Ross SR, Choe H, Farzan M: Receptor determinants of zoonotic transmission of New World hemorrhagic fever arenaviruses. Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2664-9. doi: 10.1073/pnas.0709254105. Epub 2008 Feb 11. [Article]
  28. Chen R, Jiang X, Sun D, Han G, Wang F, Ye M, Wang L, Zou H: Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. J Proteome Res. 2009 Feb;8(2):651-61. doi: 10.1021/pr8008012. [Article]
  29. Wollscheid B, Bausch-Fluck D, Henderson C, O'Brien R, Bibel M, Schiess R, Aebersold R, Watts JD: Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat Biotechnol. 2009 Apr;27(4):378-86. doi: 10.1038/nbt.1532. Epub 2009 Apr 6. [Article]
  30. Mayya V, Lundgren DH, Hwang SI, Rezaul K, Wu L, Eng JK, Rodionov V, Han DK: Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal. 2009 Aug 18;2(84):ra46. doi: 10.1126/scisignal.2000007. [Article]
  31. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal. 2010 Jan 12;3(104):ra3. doi: 10.1126/scisignal.2000475. [Article]
  32. Burkard TR, Planyavsky M, Kaupe I, Breitwieser FP, Burckstummer T, Bennett KL, Superti-Furga G, Colinge J: Initial characterization of the human central proteome. BMC Syst Biol. 2011 Jan 26;5:17. doi: 10.1186/1752-0509-5-17. [Article]
  33. Bian Y, Song C, Cheng K, Dong M, Wang F, Huang J, Sun D, Wang L, Ye M, Zou H: An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics. 2014 Jan 16;96:253-62. doi: 10.1016/j.jprot.2013.11.014. Epub 2013 Nov 22. [Article]
  34. Vaca Jacome AS, Rabilloud T, Schaeffer-Reiss C, Rompais M, Ayoub D, Lane L, Bairoch A, Van Dorsselaer A, Carapito C: N-terminome analysis of the human mitochondrial proteome. Proteomics. 2015 Jul;15(14):2519-24. doi: 10.1002/pmic.201400617. Epub 2015 Jun 8. [Article]
  35. Fuchs H, Lucken U, Tauber R, Engel A, Gessner R: Structural model of phospholipid-reconstituted human transferrin receptor derived by electron microscopy. Structure. 1998 Oct 15;6(10):1235-43. [Article]
  36. Lawrence CM, Ray S, Babyonyshev M, Galluser R, Borhani DW, Harrison SC: Crystal structure of the ectodomain of human transferrin receptor. Science. 1999 Oct 22;286(5440):779-82. [Article]
  37. Douabin-Gicquel V, Soriano N, Ferran H, Wojcik F, Palierne E, Tamim S, Jovelin T, McKie AT, Le Gall JY, David V, Mosser J: Identification of 96 single nucleotide polymorphisms in eight genes involved in iron metabolism: efficiency of bioinformatic extraction compared with a systematic sequencing approach. Hum Genet. 2001 Oct;109(4):393-401. [Article]

Drug Relations

Drug Relations
DrugBank IDNameDrug groupPharmacological action?ActionsDetails
DB15617Ferric derisomaltoseapprovedunknownsubstrateDetails
DB15617Ferric derisomaltoseapprovedunknownbinderDetails
DB13257Ferrous sulfate anhydrousapprovedyessubstrateDetails
DB01592IronapprovedunknownDetails
DB13949Ferric cationapprovedyesagonistDetails
DB14488Ferrous gluconateapprovedunknownDetails
DB14489Ferrous succinateapprovedunknownDetails
DB14490Ferrous ascorbateapprovedunknownDetails
DB14491Ferrous fumarateapprovedunknownDetails
DB14501Ferrous glycine sulfateapprovedunknownDetails
DB14520Tetraferric tricitrate decahydrateapprovedyesligandDetails