Enoyl-[acyl-carrier-protein] reductase [NADH]

Details

Name
Enoyl-[acyl-carrier-protein] reductase [NADH]
Synonyms
  • 1.3.1.9
  • ENR
  • FAS-II enoyl-ACP reductase
  • NADH-dependent 2-trans-enoyl-ACP reductase
Gene Name
inhA
Organism
Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv)
Amino acid sequence
>lcl|BSEQ0051173|Enoyl-[acyl-carrier-protein] reductase [NADH]
MTGLLDGKRILVSGIITDSSIAFHIARVAQEQGAQLVLTGFDRLRLIQRITDRLPAKAPL
LELDVQNEEHLASLAGRVTEAIGAGNKLDGVVHSIGFMPQTGMGINPFFDAPYADVSKGI
HISAYSYASMAKALLPIMNPGGSIVGMDFDPSRAMPAYNWMTVAKSALESVNRFVAREAG
KYGVRSNLVAAGPIRTLAMSAIVGGALGEEAGAQIQLLEEGWDQRAPIGWNMKDATPVAK
TVCALLSDWLPATTGDIIYADGGAHTQLL
Number of residues
269
Molecular Weight
28527.55
Theoretical pI
Not Available
GO Classification
Functions
enoyl-[acyl-carrier-protein] reductase (NADH) activity / fatty acid binding / NAD+ binding
Processes
fatty acid elongation / mycolic acid biosynthetic process / response to antibiotic
Components
cell wall / plasma membrane
General Function
Enoyl-ACP reductase of the type II fatty acid syntase (FAS-II) system, which is involved in the biosynthesis of mycolic acids, a major component of mycobacterial cell walls (PubMed:25227413). Catalyzes the NADH-dependent reduction of the double bond of 2-trans-enoyl-[acyl-carrier protein], an essential step in the fatty acid elongation cycle of the FAS-II pathway (PubMed:7599116). Shows preference for long-chain fatty acyl thioester substrates (>C16), and can also use 2-trans-enoyl-CoAs as alternative substrates (PubMed:7599116). The mycobacterial FAS-II system utilizes the products of the FAS-I system as primers to extend fatty acyl chain lengths up to C56, forming the meromycolate chain that serves as the precursor for final mycolic acids (PubMed:25227413).
Specific Function
Enoyl-[acyl-carrier-protein] reductase (nadh) activity
Pfam Domain Function
Not Available
Transmembrane Regions
Not Available
Cellular Location
Not Available
Gene sequence
>lcl|BSEQ0051174|Enoyl-[acyl-carrier-protein] reductase [NADH] (inhA)
ATGACAGGACTGCTGGACGGCAAACGGATTCTGGTTAGCGGAATCATCACCGACTCGTCG
ATCGCGTTTCACATCGCACGGGTAGCCCAGGAGCAGGGCGCCCAGCTGGTGCTCACCGGG
TTCGACCGGCTGCGGCTGATTCAGCGCATCACCGACCGGCTGCCGGCAAAGGCCCCGCTG
CTCGAACTCGACGTGCAAAACGAGGAGCACCTGGCCAGCTTGGCCGGCCGGGTGACCGAG
GCGATCGGGGCGGGCAACAAGCTCGACGGGGTGGTGCATTCGATTGGGTTCATGCCGCAG
ACCGGGATGGGCATCAACCCGTTCTTCGACGCGCCCTACGCGGATGTGTCCAAGGGCATC
CACATCTCGGCGTATTCGTATGCTTCGATGGCCAAGGCGCTGCTGCCGATCATGAACCCC
GGAGGTTCCATCGTCGGCATGGACTTCGACCCGAGCCGGGCGATGCCGGCCTACAACTGG
ATGACGGTCGCCAAGAGCGCGTTGGAGTCGGTCAACAGGTTCGTGGCGCGCGAGGCCGGC
AAGTACGGTGTGCGTTCGAATCTCGTTGCCGCAGGCCCTATCCGGACGCTGGCGATGAGT
GCGATCGTCGGCGGTGCGCTCGGCGAGGAGGCCGGCGCCCAGATCCAGCTGCTCGAGGAG
GGCTGGGATCAGCGCGCTCCGATCGGCTGGAACATGAAGGATGCGACGCCGGTCGCCAAG
ACGGTGTGCGCGCTGCTGTCTGACTGGCTGCCGGCGACCACGGGTGACATCATCTACGCC
GACGGCGGCGCGCACACCCAATTGCTCTAG
Chromosome Location
Not Available
Locus
Not Available
External Identifiers
ResourceLink
UniProtKB IDP9WGR1
UniProtKB Entry NameINHA_MYCTU
General References
  1. Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, Collins D, de Lisle G, Jacobs WR Jr: inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science. 1994 Jan 14;263(5144):227-30. [Article]
  2. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG: Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998 Jun 11;393(6685):537-44. [Article]
  3. Quemard A, Sacchettini JC, Dessen A, Vilcheze C, Bittman R, Jacobs WR Jr, Blanchard JS: Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis. Biochemistry. 1995 Jul 4;34(26):8235-41. [Article]
  4. Parikh S, Moynihan DP, Xiao G, Tonge PJ: Roles of tyrosine 158 and lysine 165 in the catalytic mechanism of InhA, the enoyl-ACP reductase from Mycobacterium tuberculosis. Biochemistry. 1999 Oct 12;38(41):13623-34. [Article]
  5. Larsen MH, Vilcheze C, Kremer L, Besra GS, Parsons L, Salfinger M, Heifets L, Hazbon MH, Alland D, Sacchettini JC, Jacobs WR Jr: Overexpression of inhA, but not kasA, confers resistance to isoniazid and ethionamide in Mycobacterium smegmatis, M. bovis BCG and M. tuberculosis. Mol Microbiol. 2002 Oct;46(2):453-66. [Article]
  6. Rawat R, Whitty A, Tonge PJ: The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: adduct affinity and drug resistance. Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):13881-6. Epub 2003 Nov 17. [Article]
  7. Raman K, Yeturu K, Chandra N: targetTB: a target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis. BMC Syst Biol. 2008 Dec 19;2:109. doi: 10.1186/1752-0509-2-109. [Article]
  8. Khan S, Nagarajan SN, Parikh A, Samantaray S, Singh A, Kumar D, Roy RP, Bhatt A, Nandicoori VK: Phosphorylation of enoyl-acyl carrier protein reductase InhA impacts mycobacterial growth and survival. J Biol Chem. 2010 Nov 26;285(48):37860-71. doi: 10.1074/jbc.M110.143131. Epub 2010 Sep 23. [Article]
  9. Kelkar DS, Kumar D, Kumar P, Balakrishnan L, Muthusamy B, Yadav AK, Shrivastava P, Marimuthu A, Anand S, Sundaram H, Kingsbury R, Harsha HC, Nair B, Prasad TS, Chauhan DS, Katoch K, Katoch VM, Kumar P, Chaerkady R, Ramachandran S, Dash D, Pandey A: Proteogenomic analysis of Mycobacterium tuberculosis by high resolution mass spectrometry. Mol Cell Proteomics. 2011 Dec;10(12):M111.011627. doi: 10.1074/mcp.M111.011445. Epub 2011 Oct 3. [Article]
  10. Pan P, Tonge PJ: Targeting InhA, the FASII enoyl-ACP reductase: SAR studies on novel inhibitor scaffolds. Curr Top Med Chem. 2012;12(7):672-93. [Article]
  11. Duan X, Xiang X, Xie J: Crucial components of Mycobacterium type II fatty acid biosynthesis (Fas-II) and their inhibitors. FEMS Microbiol Lett. 2014 Nov;360(2):87-99. doi: 10.1111/1574-6968.12597. Epub 2014 Oct 21. [Article]
  12. Dessen A, Quemard A, Blanchard JS, Jacobs WR Jr, Sacchettini JC: Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Science. 1995 Mar 17;267(5204):1638-41. [Article]
  13. Rozwarski DA, Grant GA, Barton DH, Jacobs WR Jr, Sacchettini JC: Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science. 1998 Jan 2;279(5347):98-102. [Article]
  14. Rozwarski DA, Vilcheze C, Sugantino M, Bittman R, Sacchettini JC: Crystal structure of the Mycobacterium tuberculosis enoyl-ACP reductase, InhA, in complex with NAD+ and a C16 fatty acyl substrate. J Biol Chem. 1999 May 28;274(22):15582-9. [Article]
  15. Kuo MR, Morbidoni HR, Alland D, Sneddon SF, Gourlie BB, Staveski MM, Leonard M, Gregory JS, Janjigian AD, Yee C, Musser JM, Kreiswirth B, Iwamoto H, Perozzo R, Jacobs WR Jr, Sacchettini JC, Fidock DA: Targeting tuberculosis and malaria through inhibition of Enoyl reductase: compound activity and structural data. J Biol Chem. 2003 Jun 6;278(23):20851-9. Epub 2003 Feb 26. [Article]
  16. Sullivan TJ, Truglio JJ, Boyne ME, Novichenok P, Zhang X, Stratton CF, Li HJ, Kaur T, Amin A, Johnson F, Slayden RA, Kisker C, Tonge PJ: High affinity InhA inhibitors with activity against drug-resistant strains of Mycobacterium tuberculosis. ACS Chem Biol. 2006 Feb 17;1(1):43-53. [Article]
  17. He X, Alian A, Stroud R, Ortiz de Montellano PR: Pyrrolidine carboxamides as a novel class of inhibitors of enoyl acyl carrier protein reductase from Mycobacterium tuberculosis. J Med Chem. 2006 Oct 19;49(21):6308-23. [Article]
  18. Oliveira JS, Pereira JH, Canduri F, Rodrigues NC, de Souza ON, de Azevedo WF Jr, Basso LA, Santos DS: Crystallographic and pre-steady-state kinetics studies on binding of NADH to wild-type and isoniazid-resistant enoyl-ACP(CoA) reductase enzymes from Mycobacterium tuberculosis. J Mol Biol. 2006 Jun 9;359(3):646-66. Epub 2006 Apr 21. [Article]
  19. Vilcheze C, Wang F, Arai M, Hazbon MH, Colangeli R, Kremer L, Weisbrod TR, Alland D, Sacchettini JC, Jacobs WR Jr: Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid. Nat Med. 2006 Sep;12(9):1027-9. Epub 2006 Aug 13. [Article]
  20. He X, Alian A, Ortiz de Montellano PR: Inhibition of the Mycobacterium tuberculosis enoyl acyl carrier protein reductase InhA by arylamides. Bioorg Med Chem. 2007 Nov 1;15(21):6649-58. Epub 2007 Aug 15. [Article]
  21. Argyrou A, Vetting MW, Blanchard JS: New insight into the mechanism of action of and resistance to isoniazid: interaction of Mycobacterium tuberculosis enoyl-ACP reductase with INH-NADP. J Am Chem Soc. 2007 Aug 8;129(31):9582-3. Epub 2007 Jul 18. [Article]
  22. Wang F, Langley R, Gulten G, Dover LG, Besra GS, Jacobs WR Jr, Sacchettini JC: Mechanism of thioamide drug action against tuberculosis and leprosy. J Exp Med. 2007 Jan 22;204(1):73-8. Epub 2007 Jan 16. [Article]
  23. Dias MV, Vasconcelos IB, Prado AM, Fadel V, Basso LA, de Azevedo WF Jr, Santos DS: Crystallographic studies on the binding of isonicotinyl-NAD adduct to wild-type and isoniazid resistant 2-trans-enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis. J Struct Biol. 2007 Sep;159(3):369-80. Epub 2007 May 3. [Article]
  24. Freundlich JS, Wang F, Vilcheze C, Gulten G, Langley R, Schiehser GA, Jacobus DP, Jacobs WR Jr, Sacchettini JC: Triclosan derivatives: towards potent inhibitors of drug-sensitive and drug-resistant Mycobacterium tuberculosis. ChemMedChem. 2009 Feb;4(2):241-8. doi: 10.1002/cmdc.200800261. [Article]
  25. Luckner SR, Liu N, am Ende CW, Tonge PJ, Kisker C: A slow, tight binding inhibitor of InhA, the enoyl-acyl carrier protein reductase from Mycobacterium tuberculosis. J Biol Chem. 2010 May 7;285(19):14330-7. doi: 10.1074/jbc.M109.090373. Epub 2010 Mar 3. [Article]
  26. Molle V, Gulten G, Vilcheze C, Veyron-Churlet R, Zanella-Cleon I, Sacchettini JC, Jacobs WR Jr, Kremer L: Phosphorylation of InhA inhibits mycolic acid biosynthesis and growth of Mycobacterium tuberculosis. Mol Microbiol. 2010 Dec;78(6):1591-605. doi: 10.1111/j.1365-2958.2010.07446.x. Epub 2010 Nov 9. [Article]
  27. Hartkoorn RC, Sala C, Neres J, Pojer F, Magnet S, Mukherjee R, Uplekar S, Boy-Rottger S, Altmann KH, Cole ST: Towards a new tuberculosis drug: pyridomycin - nature's isoniazid. EMBO Mol Med. 2012 Oct;4(10):1032-42. doi: 10.1002/emmm.201201689. Epub 2012 Sep 17. [Article]
  28. Shirude PS, Madhavapeddi P, Naik M, Murugan K, Shinde V, Nandishaiah R, Bhat J, Kumar A, Hameed S, Holdgate G, Davies G, McMiken H, Hegde N, Ambady A, Venkatraman J, Panda M, Bandodkar B, Sambandamurthy VK, Read JA: Methyl-thiazoles: a novel mode of inhibition with the potential to develop novel inhibitors targeting InhA in Mycobacterium tuberculosis. J Med Chem. 2013 Nov 14;56(21):8533-42. doi: 10.1021/jm4012033. Epub 2013 Oct 25. [Article]
  29. Li HJ, Lai CT, Pan P, Yu W, Liu N, Bommineni GR, Garcia-Diaz M, Simmerling C, Tonge PJ: A structural and energetic model for the slow-onset inhibition of the Mycobacterium tuberculosis enoyl-ACP reductase InhA. ACS Chem Biol. 2014 Apr 18;9(4):986-93. doi: 10.1021/cb400896g. Epub 2014 Mar 10. [Article]
  30. Pan P, Knudson SE, Bommineni GR, Li HJ, Lai CT, Liu N, Garcia-Diaz M, Simmerling C, Patil SS, Slayden RA, Tonge PJ: Time-dependent diaryl ether inhibitors of InhA: structure-activity relationship studies of enzyme inhibition, antibacterial activity, and in vivo efficacy. ChemMedChem. 2014 Apr;9(4):776-91. doi: 10.1002/cmdc.201300429. Epub 2014 Mar 11. [Article]
  31. Hartkoorn RC, Pojer F, Read JA, Gingell H, Neres J, Horlacher OP, Altmann KH, Cole ST: Pyridomycin bridges the NADH- and substrate-binding pockets of the enoyl reductase InhA. Nat Chem Biol. 2014 Feb;10(2):96-8. doi: 10.1038/nchembio.1405. Epub 2013 Dec 1. [Article]
  32. Lai CT, Li HJ, Yu W, Shah S, Bommineni GR, Perrone V, Garcia-Diaz M, Tonge PJ, Simmerling C: Rational Modulation of the Induced-Fit Conformational Change for Slow-Onset Inhibition in Mycobacterium tuberculosis InhA. Biochemistry. 2015 Aug 4;54(30):4683-91. doi: 10.1021/acs.biochem.5b00284. Epub 2015 Jul 24. [Article]
  33. Chollet A, Mourey L, Lherbet C, Delbot A, Julien S, Baltas M, Bernadou J, Pratviel G, Maveyraud L, Bernardes-Genisson V: Crystal structure of the enoyl-ACP reductase of Mycobacterium tuberculosis (InhA) in the apo-form and in complex with the active metabolite of isoniazid pre-formed by a biomimetic approach. J Struct Biol. 2015 Jun;190(3):328-37. doi: 10.1016/j.jsb.2015.04.008. Epub 2015 Apr 17. [Article]
  34. Manjunatha UH, S Rao SP, Kondreddi RR, Noble CG, Camacho LR, Tan BH, Ng SH, Ng PS, Ma NL, Lakshminarayana SB, Herve M, Barnes SW, Yu W, Kuhen K, Blasco F, Beer D, Walker JR, Tonge PJ, Glynne R, Smith PW, Diagana TT: Direct inhibitors of InhA are active against Mycobacterium tuberculosis. Sci Transl Med. 2015 Jan 7;7(269):269ra3. doi: 10.1126/scitranslmed.3010597. [Article]
  35. Guardia A, Gulten G, Fernandez R, Gomez J, Wang F, Convery M, Blanco D, Martinez M, Perez-Herran E, Alonso M, Ortega F, Rullas J, Calvo D, Mata L, Young R, Sacchettini JC, Mendoza-Losana A, Remuinan M, Ballell Pages L, Castro-Pichel J: N-Benzyl-4-((heteroaryl)methyl)benzamides: A New Class of Direct NADH-Dependent 2-trans Enoyl-Acyl Carrier Protein Reductase (InhA) Inhibitors with Antitubercular Activity. ChemMedChem. 2016 Apr 5;11(7):687-701. doi: 10.1002/cmdc.201600020. Epub 2016 Mar 2. [Article]
  36. Martinez-Hoyos M, Perez-Herran E, Gulten G, Encinas L, Alvarez-Gomez D, Alvarez E, Ferrer-Bazaga S, Garcia-Perez A, Ortega F, Angulo-Barturen I, Rullas-Trincado J, Blanco Ruano D, Torres P, Castaneda P, Huss S, Fernandez Menendez R, Gonzalez Del Valle S, Ballell L, Barros D, Modha S, Dhar N, Signorino-Gelo F, McKinney JD, Garcia-Bustos JF, Lavandera JL, Sacchettini JC, Jimenez MS, Martin-Casabona N, Castro-Pichel J, Mendoza-Losana A: Antitubercular drugs for an old target: GSK693 as a promising InhA direct inhibitor. EBioMedicine. 2016 Jun;8:291-301. doi: 10.1016/j.ebiom.2016.05.006. Epub 2016 May 8. [Article]

Drug Relations

Drug Relations
DrugBank IDNameDrug groupPharmacological action?ActionsDetails
DB00609EthionamideapprovedyesinhibitorDetails
DB00951Isoniazidapproved, investigationalyesadductDetails
DB02990S-(2-Acetamidoethyl) hexadecanethioateexperimentalunknownDetails
DB04289Genz-10850experimentalunknownDetails
DB07090(3S)-N-(3-CHLORO-2-METHYLPHENYL)-1-CYCLOHEXYL-5-OXOPYRROLIDINE-3-CARBOXAMIDEexperimentalunknownDetails
DB07123N-(4-METHYLBENZOYL)-4-BENZYLPIPERIDINEexperimentalunknownDetails
DB07155(3S)-1-CYCLOHEXYL-5-OXO-N-PHENYLPYRROLIDINE-3-CARBOXAMIDEexperimentalunknownDetails
DB071785-PENTYL-2-PHENOXYPHENOLexperimentalunknownDetails
DB07188(3S)-1-CYCLOHEXYL-N-(3,5-DICHLOROPHENYL)-5-OXOPYRROLIDINE-3-CARBOXAMIDEexperimentalunknownDetails
DB07192(3S)-N-(3-BROMOPHENYL)-1-CYCLOHEXYL-5-OXOPYRROLIDINE-3-CARBOXAMIDEexperimentalunknownDetails
DB07222(3S)-N-(5-CHLORO-2-METHYLPHENYL)-1-CYCLOHEXYL-5-OXOPYRROLIDINE-3-CARBOXAMIDEexperimentalunknownDetails
DB072872-(2,4-DICHLOROPHENOXY)-5-(PYRIDIN-2-YLMETHYL)PHENOLexperimentalunknownDetails
DB08604Triclosanapproved, investigationalunknownDetails
DB05154Pretomanidapprovedunknownother/unknownDetails