Splicing factor, proline- and glutamine-rich

Details

Name
Splicing factor, proline- and glutamine-rich
Synonyms
  • 100 kDa DNA-pairing protein
  • DNA-binding p52/p100 complex, 100 kDa subunit
  • hPOMp100
  • Polypyrimidine tract-binding protein-associated-splicing factor
  • PSF
  • PTB-associated-splicing factor
Gene Name
SFPQ
Organism
Humans
Amino acid sequence
>lcl|BSEQ0049646|Splicing factor, proline- and glutamine-rich
MSRDRFRSRGGGGGGFHRRGGGGGRGGLHDFRSPPPGMGLNQNRGPMGPGPGQSGPKPPI
PPPPPHQQQQQPPPQQPPPQQPPPHQPPPHPQPHQQQQPPPPPQDSSKPVVAQGPGPAPG
VGSAPPASSSAPPATPPTSGAPPGSGPGPTPTPPPAVTSAPPGAPPPTPPSSGVPTTPPQ
AGGPPPPPAAVPGPGPGPKQGPGPGGPKGGKMPGGPKPGGGPGLSTPGGHPKPPHRGGGE
PRGGRQHHPPYHQQHHQGPPPGGPGGRSEEKISDSEGFKANLSLLRRPGEKTYTQRCRLF
VGNLPADITEDEFKRLFAKYGEPGEVFINKGKGFGFIKLESRALAEIAKAELDDTPMRGR
QLRVRFATHAAALSVRNLSPYVSNELLEEAFSQFGPIERAVVIVDDRGRSTGKGIVEFAS
KPAARKAFERCSEGVFLLTTTPRPVIVEPLEQLDDEDGLPEKLAQKNPMYQKERETPPRF
AQHGTFEYEYSQRWKSLDEMEKQQREQVEKNMKDAKDKLESEMEDAYHEHQANLLRQDLM
RRQEELRRMEELHNQEMQKRKEMQLRQEEERRRREEEMMIRQREMEEQMRRQREESYSRM
GYMDPRERDMRMGGGGAMNMGDPYGSGGQKFPPLGGGGGIGYEANPGVPPATMSGSMMGS
DMRTERFGQGGAGPVGGQGPRGMGPGTPAGYGRGREEYEGPNKKPRF
Number of residues
707
Molecular Weight
76149.15
Theoretical pI
Not Available
GO Classification
Functions
chromatin binding / core promoter binding / DNA binding / histone deacetylase binding / protein homodimerization activity / RNA binding / RNA polymerase II distal enhancer sequence-specific DNA binding / transcription regulatory region DNA binding / transcription regulatory region sequence-specific DNA binding
Processes
alternative mRNA splicing, via spliceosome / double-strand break repair via homologous recombination / histone H3 deacetylation / mRNA processing / negative regulation of circadian rhythm / negative regulation of transcription from RNA polymerase II promoter / negative regulation of transcription, DNA-templated / positive regulation of oxidative stress-induced intrinsic apoptotic signaling pathway / positive regulation of sister chromatid cohesion / positive regulation of transcription from RNA polymerase II promoter / regulation of circadian rhythm / rhythmic process / RNA splicing / transcription, DNA-templated
Components
chromatin / cytoplasm / extracellular matrix / nuclear matrix / nuclear speck / nucleoplasm / nucleus / paraspeckles / RNA polymerase II transcription factor complex
General Function
DNA- and RNA binding protein, involved in several nuclear processes. Essential pre-mRNA splicing factor required early in spliceosome formation and for splicing catalytic step II, probably as a heteromer with NONO. Binds to pre-mRNA in spliceosome C complex, and specifically binds to intronic polypyrimidine tracts. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45, a phosphorylated form is sequestered by THRAP3 from the pre-mRNA in resting T-cells; T-cell activation and subsequent reduced phosphorylation is proposed to lead to release from THRAP3 allowing binding to pre-mRNA splicing regulatotry elements which represses exon inclusion. Interacts with U5 snRNA, probably by binding to a purine-rich sequence located on the 3' side of U5 snRNA stem 1b. May be involved in a pre-mRNA coupled splicing and polyadenylation process as component of a snRNP-free complex with SNRPA/U1A. The SFPQ-NONO heteromer associated with MATR3 may play a role in nuclear retention of defective RNAs. SFPQ may be involved in homologous DNA pairing; in vitro, promotes the invasion of ssDNA between a duplex DNA and produces a D-loop formation. The SFPQ-NONO heteromer may be involved in DNA unwinding by modulating the function of topoisomerase I/TOP1; in vitro, stimulates dissociation of TOP1 from DNA after cleavage and enhances its jumping between separate DNA helices. The SFPQ-NONO heteromer binds DNA (PubMed:25765647). The SFPQ-NONO heteromer may be involved in DNA non-homologous end joining (NHEJ) required for double-strand break repair and V(D)J recombination and may stabilize paired DNA ends; in vitro, the complex strongly stimulates DNA end joining, binds directly to the DNA substrates and cooperates with the Ku70/G22P1-Ku80/XRCC5 (Ku) dimer to establish a functional preligation complex. SFPQ is involved in transcriptional regulation. Functions as transcriptional activator (PubMed:25765647). Transcriptional repression is mediated by an interaction of SFPQ with SIN3A and subsequent recruitment of histone deacetylases (HDACs). The SFPQ-NONO-NR5A1 complex binds to the CYP17 promoter and regulates basal and cAMP-dependent transcriptional avtivity. SFPQ isoform Long binds to the DNA binding domains (DBD) of nuclear hormone receptors, like RXRA and probably THRA, and acts as transcriptional corepressor in absence of hormone ligands. Binds the DNA sequence 5'-CTGAGTC-3' in the insulin-like growth factor response element (IGFRE) and inhibits IGF-I-stimulated transcriptional activity. Regulates the circadian clock by repressing the transcriptional activator activity of the CLOCK-ARNTL/BMAL1 heterodimer. Required for the transcriptional repression of circadian target genes, such as PER1, mediated by the large PER complex through histone deacetylation (By similarity). Required for the assembly of nuclear speckles (PubMed:25765647).
Specific Function
Chromatin binding
Pfam Domain Function
Transmembrane Regions
Not Available
Cellular Location
Nucleus speckle
Gene sequence
>lcl|BSEQ0049647|Splicing factor, proline- and glutamine-rich (SFPQ)
ATGTCTCGGGATCGGTTCCGGAGTCGTGGCGGTGGCGGTGGTGGCTTCCACAGGCGTGGA
GGAGGCGGCGGCCGCGGCGGCCTCCACGACTTCCGTTCTCCGCCGCCCGGCATGGGCCTC
AATCAGAATCGCGGCCCCATGGGTCCTGGCCCGGGCCAGAGCGGCCCTAAGCCTCCGATC
CCGCCACCGCCTCCACACCAACAGCAGCAACAGCCACCACCGCAGCAGCCACCGCCGCAG
CAGCCGCCACCGCATCAGCCGCCGCCGCATCCACAGCCGCATCAGCAGCAGCAGCCGCCG
CCACCGCCGCAGGACTCTTCCAAGCCCGTCGTTGCTCAGGGACCCGGCCCCGCTCCCGGA
GTAGGCAGCGCACCACCAGCCTCCAGCTCGGCCCCGCCCGCCACTCCACCAACCTCGGGG
GCCCCGCCAGGGTCCGGGCCAGGCCCGACTCCGACCCCGCCGCCTGCAGTCACCTCGGCC
CCTCCCGGGGCGCCGCCACCCACCCCGCCAAGCAGCGGGGTCCCTACCACACCTCCTCAG
GCCGGAGGCCCGCCGCCTCCGCCCGCGGCAGTCCCGGGCCCGGGTCCAGGGCCTAAGCAG
GGCCCAGGTCCGGGTGGTCCCAAAGGCGGCAAAATGCCTGGCGGGCCGAAGCCAGGTGGC
GGCCCGGGCCTAAGTACGCCTGGCGGCCACCCCAAGCCGCCGCATCGAGGCGGCGGGGAG
CCCCGCGGGGGCCGCCAGCACCACCCGCCCTACCACCAGCAGCATCACCAGGGGCCCCCG
CCCGGCGGGCCCGGCGGCCGCAGCGAGGAGAAGATCTCGGACTCGGAGGGGTTTAAAGCC
AATTTGTCTCTCTTGAGGAGGCCTGGAGAGAAAACTTACACACAGCGATGTCGGTTGTTT
GTTGGGAATCTACCTGCTGATATCACGGAGGATGAATTCAAAAGACTATTTGCTAAATAT
GGAGAACCAGGAGAAGTTTTTATCAACAAAGGCAAAGGATTCGGATTTATTAAGCTTGAA
TCTAGAGCTTTGGCTGAAATTGCCAAAGCCGAACTGGATGATACACCCATGAGAGGTAGA
CAGCTTCGAGTTCGCTTTGCCACACATGCTGCTGCCCTTTCTGTTCGTAATCTTTCACCT
TATGTTTCCAATGAACTGTTGGAAGAAGCCTTTAGCCAATTTGGTCCTATTGAAAGGGCT
GTTGTAATAGTGGATGATCGTGGAAGATCTACAGGGAAAGGCATTGTTGAATTTGCTTCT
AAGCCAGCAGCAAGAAAGGCATTTGAACGATGCAGTGAAGGTGTTTTCTTACTGACGACA
ACTCCTCGTCCAGTCATTGTGGAACCACTTGAACAACTAGATGATGAAGATGGTCTTCCT
GAAAAACTTGCCCAGAAGAATCCAATGTATCAAAAGGAGAGAGAAACCCCTCCTCGTTTT
GCCCAGCATGGCACGTTTGAGTACGAATATTCTCAGCGATGGAAGTCTTTGGATGAAATG
GAAAAACAGCAAAGGGAACAAGTTGAAAAAAACATGAAAGATGCAAAAGACAAATTGGAA
AGTGAAATGGAAGATGCCTATCATGAACATCAGGCAAATCTTTTGCGCCAAGATCTGATG
AGACGACAGGAAGAATTAAGACGCATGGAAGAACTTCACAATCAAGAAATGCAGAAACGT
AAAGAAATGCAATTGAGGCAAGAGGAGGAACGACGTAGAAGAGAGGAAGAGATGATGATT
CGTCAACGTGAGATGGAAGAACAAATGAGGCGCCAAAGAGAGGAAAGTTACAGCCGAATG
GGCTACATGGATCCACGGGAAAGAGACATGCGAATGGGTGGCGGAGGAGCAATGAACATG
GGAGATCCCTATGGTTCAGGAGGCCAGAAATTTCCACCTCTAGGAGGTGGTGGTGGCATA
GGTTATGAAGCTAATCCTGGCGTTCCACCAGCAACCATGAGTGGTTCCATGATGGGAAGT
GACATGCGTACTGAGCGCTTTGGGCAGGGAGGTGCGGGGCCTGTGGGTGGACAGGGTCCT
AGAGGAATGGGGCCTGGAACTCCAGCAGGATATGGTAGAGGGAGAGAAGAGTACGAAGGC
CCAAACAAAAAACCCCGATTTTAG
Chromosome Location
1
Locus
1p34.3
External Identifiers
ResourceLink
UniProtKB IDP23246
UniProtKB Entry NameSFPQ_HUMAN
HGNC IDHGNC:10774
General References
  1. Patton JG, Porro EB, Galceran J, Tempst P, Nadal-Ginard B: Cloning and characterization of PSF, a novel pre-mRNA splicing factor. Genes Dev. 1993 Mar;7(3):393-406. [Article]
  2. Gregory SG, Barlow KF, McLay KE, Kaul R, Swarbreck D, Dunham A, Scott CE, Howe KL, Woodfine K, Spencer CC, Jones MC, Gillson C, Searle S, Zhou Y, Kokocinski F, McDonald L, Evans R, Phillips K, Atkinson A, Cooper R, Jones C, Hall RE, Andrews TD, Lloyd C, Ainscough R, Almeida JP, Ambrose KD, Anderson F, Andrew RW, Ashwell RI, Aubin K, Babbage AK, Bagguley CL, Bailey J, Beasley H, Bethel G, Bird CP, Bray-Allen S, Brown JY, Brown AJ, Buckley D, Burton J, Bye J, Carder C, Chapman JC, Clark SY, Clarke G, Clee C, Cobley V, Collier RE, Corby N, Coville GJ, Davies J, Deadman R, Dunn M, Earthrowl M, Ellington AG, Errington H, Frankish A, Frankland J, French L, Garner P, Garnett J, Gay L, Ghori MR, Gibson R, Gilby LM, Gillett W, Glithero RJ, Grafham DV, Griffiths C, Griffiths-Jones S, Grocock R, Hammond S, Harrison ES, Hart E, Haugen E, Heath PD, Holmes S, Holt K, Howden PJ, Hunt AR, Hunt SE, Hunter G, Isherwood J, James R, Johnson C, Johnson D, Joy A, Kay M, Kershaw JK, Kibukawa M, Kimberley AM, King A, Knights AJ, Lad H, Laird G, Lawlor S, Leongamornlert DA, Lloyd DM, Loveland J, Lovell J, Lush MJ, Lyne R, Martin S, Mashreghi-Mohammadi M, Matthews L, Matthews NS, McLaren S, Milne S, Mistry S, Moore MJ, Nickerson T, O'Dell CN, Oliver K, Palmeiri A, Palmer SA, Parker A, Patel D, Pearce AV, Peck AI, Pelan S, Phelps K, Phillimore BJ, Plumb R, Rajan J, Raymond C, Rouse G, Saenphimmachak C, Sehra HK, Sheridan E, Shownkeen R, Sims S, Skuce CD, Smith M, Steward C, Subramanian S, Sycamore N, Tracey A, Tromans A, Van Helmond Z, Wall M, Wallis JM, White S, Whitehead SL, Wilkinson JE, Willey DL, Williams H, Wilming L, Wray PW, Wu Z, Coulson A, Vaudin M, Sulston JE, Durbin R, Hubbard T, Wooster R, Dunham I, Carter NP, McVean G, Ross MT, Harrow J, Olson MV, Beck S, Rogers J, Bentley DR, Banerjee R, Bryant SP, Burford DC, Burrill WD, Clegg SM, Dhami P, Dovey O, Faulkner LM, Gribble SM, Langford CF, Pandian RD, Porter KM, Prigmore E: The DNA sequence and biological annotation of human chromosome 1. Nature. 2006 May 18;441(7091):315-21. [Article]
  3. Zhang WW, Zhang LX, Busch RK, Farres J, Busch H: Purification and characterization of a DNA-binding heterodimer of 52 and 100 kDa from HeLa cells. Biochem J. 1993 Feb 15;290 ( Pt 1):267-72. [Article]
  4. Teigelkamp S, Mundt C, Achsel T, Will CL, Luhrmann R: The human U5 snRNP-specific 100-kD protein is an RS domain-containing, putative RNA helicase with significant homology to the yeast splicing factor Prp28p. RNA. 1997 Nov;3(11):1313-26. [Article]
  5. Gower HJ, Moore SE, Dickson G, Elsom VL, Nayak R, Walsh FS: Cloning and characterization of a myoblast cell surface antigen defined by 24.1D5 monoclonal antibody. Development. 1989 Apr;105(4):723-31. [Article]
  6. Lutz CS, Cooke C, O'Connor JP, Kobayashi R, Alwine JC: The snRNP-free U1A (SF-A) complex(es): identification of the largest subunit as PSF, the polypyrimidine-tract binding protein-associated splicing factor. RNA. 1998 Dec;4(12):1493-9. [Article]
  7. Meissner M, Dechat T, Gerner C, Grimm R, Foisner R, Sauermann G: Differential nuclear localization and nuclear matrix association of the splicing factors PSF and PTB. J Cell Biochem. 2000 Jan;76(4):559-66. [Article]
  8. Gozani O, Patton JG, Reed R: A novel set of spliceosome-associated proteins and the essential splicing factor PSF bind stably to pre-mRNA prior to catalytic step II of the splicing reaction. EMBO J. 1994 Jul 15;13(14):3356-67. [Article]
  9. Clark J, Lu YJ, Sidhar SK, Parker C, Gill S, Smedley D, Hamoudi R, Linehan WM, Shipley J, Cooper CS: Fusion of splicing factor genes PSF and NonO (p54nrb) to the TFE3 gene in papillary renal cell carcinoma. Oncogene. 1997 Oct;15(18):2233-9. [Article]
  10. Straub T, Grue P, Uhse A, Lisby M, Knudsen BR, Tange TO, Westergaard O, Boege F: The RNA-splicing factor PSF/p54 controls DNA-topoisomerase I activity by a direct interaction. J Biol Chem. 1998 Oct 9;273(41):26261-4. [Article]
  11. Straub T, Knudsen BR, Boege F: PSF/p54(nrb) stimulates "jumping" of DNA topoisomerase I between separate DNA helices. Biochemistry. 2000 Jun 27;39(25):7552-8. [Article]
  12. Urban RJ, Bodenburg Y, Kurosky A, Wood TG, Gasic S: Polypyrimidine tract-binding protein-associated splicing factor is a negative regulator of transcriptional activity of the porcine p450scc insulin-like growth factor response element. Mol Endocrinol. 2000 Jun;14(6):774-82. [Article]
  13. Akhmedov AT, Lopez BS: Human 100-kDa homologous DNA-pairing protein is the splicing factor PSF and promotes DNA strand invasion. Nucleic Acids Res. 2000 Aug 15;28(16):3022-30. [Article]
  14. Zhang Z, Carmichael GG: The fate of dsRNA in the nucleus: a p54(nrb)-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs. Cell. 2001 Aug 24;106(4):465-75. [Article]
  15. Shav-Tal Y, Cohen M, Lapter S, Dye B, Patton JG, Vandekerckhove J, Zipori D: Nuclear relocalization of the pre-mRNA splicing factor PSF during apoptosis involves hyperphosphorylation, masking of antigenic epitopes, and changes in protein interactions. Mol Biol Cell. 2001 Aug;12(8):2328-40. [Article]
  16. Mathur M, Tucker PW, Samuels HH: PSF is a novel corepressor that mediates its effect through Sin3A and the DNA binding domain of nuclear hormone receptors. Mol Cell Biol. 2001 Apr;21(7):2298-311. [Article]
  17. Sewer MB, Nguyen VQ, Huang CJ, Tucker PW, Kagawa N, Waterman MR: Transcriptional activation of human CYP17 in H295R adrenocortical cells depends on complex formation among p54(nrb)/NonO, protein-associated splicing factor, and SF-1, a complex that also participates in repression of transcription. Endocrinology. 2002 Apr;143(4):1280-90. [Article]
  18. Peng R, Dye BT, Perez I, Barnard DC, Thompson AB, Patton JG: PSF and p54nrb bind a conserved stem in U5 snRNA. RNA. 2002 Oct;8(10):1334-47. [Article]
  19. Bladen CL, Udayakumar D, Takeda Y, Dynan WS: Identification of the polypyrimidine tract binding protein-associated splicing factor.p54(nrb) complex as a candidate DNA double-strand break rejoining factor. J Biol Chem. 2005 Feb 18;280(7):5205-10. Epub 2004 Dec 7. [Article]
  20. Galietta A, Gunby RH, Redaelli S, Stano P, Carniti C, Bachi A, Tucker PW, Tartari CJ, Huang CJ, Colombo E, Pulford K, Puttini M, Piazza RG, Ruchatz H, Villa A, Donella-Deana A, Marin O, Perrotti D, Gambacorti-Passerini C: NPM/ALK binds and phosphorylates the RNA/DNA-binding protein PSF in anaplastic large-cell lymphoma. Blood. 2007 Oct 1;110(7):2600-9. Epub 2007 May 30. [Article]
  21. Buxade M, Morrice N, Krebs DL, Proud CG: The PSF.p54nrb complex is a novel Mnk substrate that binds the mRNA for tumor necrosis factor alpha. J Biol Chem. 2008 Jan 4;283(1):57-65. Epub 2007 Oct 26. [Article]
  22. Cantin GT, Yi W, Lu B, Park SK, Xu T, Lee JD, Yates JR 3rd: Combining protein-based IMAC, peptide-based IMAC, and MudPIT for efficient phosphoproteomic analysis. J Proteome Res. 2008 Mar;7(3):1346-51. doi: 10.1021/pr0705441. Epub 2008 Jan 26. [Article]
  23. Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP: A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10762-7. doi: 10.1073/pnas.0805139105. Epub 2008 Jul 31. [Article]
  24. Miyamoto K, Sakurai H, Sugiura T: Proteomic identification of a PSF/p54nrb heterodimer as RNF43 oncoprotein-interacting proteins. Proteomics. 2008 Jul;8(14):2907-10. doi: 10.1002/pmic.200800083. [Article]
  25. Gauci S, Helbig AO, Slijper M, Krijgsveld J, Heck AJ, Mohammed S: Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem. 2009 Jun 1;81(11):4493-501. doi: 10.1021/ac9004309. [Article]
  26. Lukong KE, Huot ME, Richard S: BRK phosphorylates PSF promoting its cytoplasmic localization and cell cycle arrest. Cell Signal. 2009 Sep;21(9):1415-22. doi: 10.1016/j.cellsig.2009.04.008. Epub 2009 May 9. [Article]
  27. Mayya V, Lundgren DH, Hwang SI, Rezaul K, Wu L, Eng JK, Rodionov V, Han DK: Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal. 2009 Aug 18;2(84):ra46. doi: 10.1126/scisignal.2000007. [Article]
  28. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M: Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009 Aug 14;325(5942):834-40. doi: 10.1126/science.1175371. Epub 2009 Jul 16. [Article]
  29. Heyd F, Lynch KW: Phosphorylation-dependent regulation of PSF by GSK3 controls CD45 alternative splicing. Mol Cell. 2010 Oct 8;40(1):126-37. doi: 10.1016/j.molcel.2010.09.013. [Article]
  30. Danelishvili L, Yamazaki Y, Selker J, Bermudez LE: Secreted Mycobacterium tuberculosis Rv3654c and Rv3655c proteins participate in the suppression of macrophage apoptosis. PLoS One. 2010 May 4;5(5):e10474. doi: 10.1371/journal.pone.0010474. [Article]
  31. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal. 2010 Jan 12;3(104):ra3. doi: 10.1126/scisignal.2000475. [Article]
  32. Burkard TR, Planyavsky M, Kaupe I, Breitwieser FP, Burckstummer T, Bennett KL, Superti-Furga G, Colinge J: Initial characterization of the human central proteome. BMC Syst Biol. 2011 Jan 26;5:17. doi: 10.1186/1752-0509-5-17. [Article]
  33. Rigbolt KT, Prokhorova TA, Akimov V, Henningsen J, Johansen PT, Kratchmarova I, Kassem M, Mann M, Olsen JV, Blagoev B: System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal. 2011 Mar 15;4(164):rs3. doi: 10.1126/scisignal.2001570. [Article]
  34. Zhou H, Di Palma S, Preisinger C, Peng M, Polat AN, Heck AJ, Mohammed S: Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res. 2013 Jan 4;12(1):260-71. doi: 10.1021/pr300630k. Epub 2012 Dec 18. [Article]
  35. Bian Y, Song C, Cheng K, Dong M, Wang F, Huang J, Sun D, Wang L, Ye M, Zou H: An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics. 2014 Jan 16;96:253-62. doi: 10.1016/j.jprot.2013.11.014. Epub 2013 Nov 22. [Article]
  36. Guo A, Gu H, Zhou J, Mulhern D, Wang Y, Lee KA, Yang V, Aguiar M, Kornhauser J, Jia X, Ren J, Beausoleil SA, Silva JC, Vemulapalli V, Bedford MT, Comb MJ: Immunoaffinity enrichment and mass spectrometry analysis of protein methylation. Mol Cell Proteomics. 2014 Jan;13(1):372-87. doi: 10.1074/mcp.O113.027870. Epub 2013 Oct 15. [Article]
  37. Hendriks IA, D'Souza RC, Yang B, Verlaan-de Vries M, Mann M, Vertegaal AC: Uncovering global SUMOylation signaling networks in a site-specific manner. Nat Struct Mol Biol. 2014 Oct;21(10):927-36. doi: 10.1038/nsmb.2890. Epub 2014 Sep 14. [Article]
  38. Xiao Z, Chang JG, Hendriks IA, Sigurethsson JO, Olsen JV, Vertegaal AC: System-wide Analysis of SUMOylation Dynamics in Response to Replication Stress Reveals Novel Small Ubiquitin-like Modified Target Proteins and Acceptor Lysines Relevant for Genome Stability. Mol Cell Proteomics. 2015 May;14(5):1419-34. doi: 10.1074/mcp.O114.044792. Epub 2015 Mar 9. [Article]
  39. Vaca Jacome AS, Rabilloud T, Schaeffer-Reiss C, Rompais M, Ayoub D, Lane L, Bairoch A, Van Dorsselaer A, Carapito C: N-terminome analysis of the human mitochondrial proteome. Proteomics. 2015 Jul;15(14):2519-24. doi: 10.1002/pmic.201400617. Epub 2015 Jun 8. [Article]
  40. Lee M, Sadowska A, Bekere I, Ho D, Gully BS, Lu Y, Iyer KS, Trewhella J, Fox AH, Bond CS: The structure of human SFPQ reveals a coiled-coil mediated polymer essential for functional aggregation in gene regulation. Nucleic Acids Res. 2015 Apr 20;43(7):3826-40. doi: 10.1093/nar/gkv156. Epub 2015 Mar 12. [Article]

Drug Relations

Drug Relations
DrugBank IDNameDrug groupPharmacological action?ActionsDetails
DB09130Copperapproved, investigationalunknownDetails
DB11638Artenimolapproved, experimental, investigationalunknownligandDetails