L-xylulose reductase

Details

Name
L-xylulose reductase
Synonyms
  • 1.1.1.10
  • Carbonyl reductase II
  • Dicarbonyl/L-xylulose reductase
  • kiDCR
  • Kidney dicarbonyl reductase
  • SDR20C1
  • Short chain dehydrogenase/reductase family 20C member 1
  • Sperm surface protein P34H
  • XR
Gene Name
DCXR
Organism
Humans
Amino acid sequence
>lcl|BSEQ0010613|L-xylulose reductase
MELFLAGRRVLVTGAGKGIGRGTVQALHATGARVVAVSRTQADLDSLVRECPGIEPVCVD
LGDWEATERALGSVGPVDLLVNNAAVALLQPFLEVTKEAFDRSFEVNLRAVIQVSQIVAR
GLIARGVPGAIVNVSSQCSQRAVTNHSVYCSTKGALDMLTKVMALELGPHKIRVNAVNPT
VVMTSMGQATWSDPHKAKTMLNRIPLGKFAEVEHVVNAILFLLSDRSGMTTGSTLPVEGG
FWAC
Number of residues
244
Molecular Weight
25912.875
Theoretical pI
8.23
GO Classification
Functions
L-xylulose reductase (NADP+) activity / oxidoreductase activity, acting on NAD(P)H, quinone or similar compound as acceptor
Processes
carbohydrate metabolic process / D-xylose metabolic process / glucose metabolic process / glucuronate catabolic process to xylulose 5-phosphate / NADP metabolic process / oxidation-reduction process / protein homotetramerization / small molecule metabolic process / xylulose metabolic process
Components
brush border / cytoplasmic microtubule / extracellular exosome / microvillus / nucleus / plasma membrane
General Function
Oxidoreductase activity, acting on nad(p)h, quinone or similar compound as acceptor
Specific Function
Catalyzes the NADPH-dependent reduction of several pentoses, tetroses, trioses, alpha-dicarbonyl compounds and L-xylulose. Participates in the uronate cycle of glucose metabolism. May play a role in the water absorption and cellular osmoregulation in the proximal renal tubules by producing xylitol, an osmolyte, thereby preventing osmolytic stress from occurring in the renal tubules.
Pfam Domain Function
Transmembrane Regions
Not Available
Cellular Location
Membrane
Gene sequence
>lcl|BSEQ0010614|L-xylulose reductase (DCXR)
ATGGAGCTGTTCCTCGCGGGCCGCCGGGTGCTGGTCACCGGGGCAGGCAAAGGGCGCGGC
ACGGTCCAGGCGCTGCACGCGACGGGCGCGCGGGTGGTGGCTGTGAGCCGGACTCAGGCG
GATCTTGACAGCCTTGTCCGCGAGTGCCCGGGGATAGAACCCGTGTGCGTGGACCTGGGT
GACTGGGAGGCCACCGAGCGGGCGCTGGGCAGCGTGGGCCCCGTGGACCTGCTGGTGAAC
AACGCCGCTGTCGCCCTGCTGCAGCCCTTCCTGGAGGTCACCAAGGAGGCCTTTGACAGA
TCCTTTGAGGTGAACCTGCGTGCGGTCATCCAGGTGTCGCAGATTGTGGCCAGGGGCTTA
ATAGCCCGGGGAGTCCCAGGGGCCATCGTGAATGTCTCCAGCCAGTGCTCCCAGCGGGCA
GTAACTAACCATAGCGTCTACTGCTCCACCAAGGGTGCCCTGGACATGCTGACCAAGGTG
ATGGCCCTAGAGCTCGGGCCCCACAAGATCCGAGTGAATGCAGTAAACCCCACAGTGGTG
ATGACGTCCATGGGCCAGGCCACCTGGAGTGACCCCCACAAGGCCAAGACTATGCTGAAC
CGAATCCCACTTGGCAAGTTTGCTGAGGTAGAGCACGTGGTGAACGCCATCCTCTTTCTG
CTGAGTGACCGAAGTGGCATGACCACGGGTTCCACTTTGCCGGTGGAAGGGGGCTTCTGG
GCCTGCTGA
Chromosome Location
17
Locus
17q25.3
External Identifiers
ResourceLink
UniProtKB IDQ7Z4W1
UniProtKB Entry NameDCXR_HUMAN
GenBank Protein ID15425623
GenBank Gene IDAB013846
GenAtlas IDDCXR
HGNC IDHGNC:18985
General References
  1. Legare C, Gaudreault C, St-Jacques S, Sullivan R: P34H sperm protein is preferentially expressed by the human corpus epididymidis. Endocrinology. 1999 Jul;140(7):3318-27. [Article]
  2. Nakagawa J, Ishikura S, Asami J, Isaji T, Usami N, Hara A, Sakurai T, Tsuritani K, Oda K, Takahashi M, Yoshimoto M, Otsuka N, Kitamura K: Molecular characterization of mammalian dicarbonyl/L-xylulose reductase and its localization in kidney. J Biol Chem. 2002 May 17;277(20):17883-91. Epub 2002 Mar 6. [Article]
  3. Xia XY, Xu XF, Gao Y, Huang YF: [Molecular cloning of human sperm surface protein P34H gene and semi-quantitative analysis of its expression in testis and epididymidis]. Zhonghua Nan Ke Xue. 2003 Feb;9(1):24-7. [Article]
  4. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. [Article]
  5. Gevaert K, Goethals M, Martens L, Van Damme J, Staes A, Thomas GR, Vandekerckhove J: Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. Nat Biotechnol. 2003 May;21(5):566-9. Epub 2003 Mar 31. [Article]
  6. Wang YM, Van Eys J: The enzymatic defect in essential pentosuria. N Engl J Med. 1970 Apr 16;282(16):892-6. [Article]
  7. Burkard TR, Planyavsky M, Kaupe I, Breitwieser FP, Burckstummer T, Bennett KL, Superti-Furga G, Colinge J: Initial characterization of the human central proteome. BMC Syst Biol. 2011 Jan 26;5:17. doi: 10.1186/1752-0509-5-17. [Article]
  8. Pierce SB, Spurrell CH, Mandell JB, Lee MK, Zeligson S, Bereman MS, Stray SM, Fokstuen S, MacCoss MJ, Levy-Lahad E, King MC, Motulsky AG: Garrod's fourth inborn error of metabolism solved by the identification of mutations causing pentosuria. Proc Natl Acad Sci U S A. 2011 Nov 8;108(45):18313-7. doi: 10.1073/pnas.1115888108. Epub 2011 Oct 31. [Article]
  9. Bienvenut WV, Sumpton D, Martinez A, Lilla S, Espagne C, Meinnel T, Giglione C: Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N-alpha-acetylation features. Mol Cell Proteomics. 2012 Jun;11(6):M111.015131. doi: 10.1074/mcp.M111.015131. Epub 2012 Jan 5. [Article]
  10. Van Damme P, Lasa M, Polevoda B, Gazquez C, Elosegui-Artola A, Kim DS, De Juan-Pardo E, Demeyer K, Hole K, Larrea E, Timmerman E, Prieto J, Arnesen T, Sherman F, Gevaert K, Aldabe R: N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB. Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12449-54. doi: 10.1073/pnas.1210303109. Epub 2012 Jul 18. [Article]
  11. Bian Y, Song C, Cheng K, Dong M, Wang F, Huang J, Sun D, Wang L, Ye M, Zou H: An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics. 2014 Jan 16;96:253-62. doi: 10.1016/j.jprot.2013.11.014. Epub 2013 Nov 22. [Article]
  12. Vaca Jacome AS, Rabilloud T, Schaeffer-Reiss C, Rompais M, Ayoub D, Lane L, Bairoch A, Van Dorsselaer A, Carapito C: N-terminome analysis of the human mitochondrial proteome. Proteomics. 2015 Jul;15(14):2519-24. doi: 10.1002/pmic.201400617. Epub 2015 Jun 8. [Article]
  13. El-Kabbani O, Chung RP, Ishikura S, Usami N, Nakagawa J, Hara A: Crystallization and preliminary crystallographic analysis of human L-xylulose reductase. Acta Crystallogr D Biol Crystallogr. 2002 Aug;58(Pt 8):1379-80. Epub 2002 Jul 20. [Article]
  14. El-Kabbani O, Ishikura S, Darmanin C, Carbone V, Chung RP, Usami N, Hara A: Crystal structure of human L-xylulose reductase holoenzyme: probing the role of Asn107 with site-directed mutagenesis. Proteins. 2004 May 15;55(3):724-32. [Article]

Drug Relations

Drug Relations
DrugBank IDNameDrug groupPharmacological action?ActionsDetails
DB02831DihydrogenphosphateexperimentalunknownDetails
DB03461Nicotinamide adenine dinucleotide phosphateexperimentalunknownDetails