Homeodomain-interacting protein kinase 2

Details

Name
Homeodomain-interacting protein kinase 2
Synonyms
  • 2.7.11.1
  • hHIPk2
Gene Name
HIPK2
Organism
Humans
Amino acid sequence
>lcl|BSEQ0051772|Homeodomain-interacting protein kinase 2
MAPVYEGMASHVQVFSPHTLQSSAFCSVKKLKIEPSSNWDMTGYGSHSKVYSQSKNIPLS
QPATTTVSTSLPVPNPSLPYEQTIVFPGSTGHIVVTSASSTSVTGQVLGGPHNLMRRSTV
SLLDTYQKCGLKRKSEEIENTSSVQIIEEHPPMIQNNASGATVATATTSTATSKNSGSNS
EGDYQLVQHEVLCSMTNTYEVLEFLGRGTFGQVVKCWKRGTNEIVAIKILKNHPSYARQG
QIEVSILARLSTESADDYNFVRAYECFQHKNHTCLVFEMLEQNLYDFLKQNKFSPLPLKY
IRPVLQQVATALMKLKSLGLIHADLKPENIMLVDPSRQPYRVKVIDFGSASHVSKAVCST
YLQSRYYRAPEIILGLPFCEAIDMWSLGCVIAELFLGWPLYPGASEYDQIRYISQTQGLP
AEYLLSAGTKTTRFFNRDTDSPYPLWRLKTPDDHEAETGIKSKEARKYIFNCLDDMAQVN
MTTDLEGSDMLVEKADRREFIDLLKKMLTIDADKRITPIETLNHPFVTMTHLLDFPHSTH
VKSCFQNMEICKRRVNMYDTVNQSKTPFITHVAPSTSTNLTMTFNNQLTTVHNQAPSSTS
ATISLANPEVSILNYPSTLYQPSAASMAAVAQRSMPLQTGTAQICARPDPFQQALIVCPP
GFQGLQASPSKHAGYSVRMENAVPIVTQAPGAQPLQIQPGLLAQQAWPSGTQQILLPPAW
QQLTGVATHTSVQHATVIPETMAGTQQLADWRNTHAHGSHYNPIMQQPALLTGHVTLPAA
QPLNVGVAHVMRQQPTSTTSSRKSKQHQSSVRNVSTCEVSSSQAISSPQRSKRVKENTPP
RCAMVHSSPACSTSVTCGWGDVASSTTRERQRQTIVIPDTPSPTVSVITISSDTDEEEEQ
KHAPTSTVSKQRKNVISCVTVHDSPYSDSSSNTSPYSVQQRAGHNNANAFDTKGSLENHC
TGNPRTIIVPPLKTQASEVLVECDSLVPVNTSHHSSSYKSKSSSNVTSTSGHSSGSSSGA
ITYRQQRPGPHFQQQQPLNLSQAQQHITTDRTGSHRRQQAYITPTMAQAPYSFPHNSPSH
GTVHPHLAAAAAAAHLPTQPHLYTYTAPAALGSTGTVAHLVASQGSARHTVQHTAYPASI
VHQVPVSMGPRVLPSPTIHPSQYPAQFAHQTYISASPASTVYTGYPLSPAKVNQYPYI
Number of residues
1198
Molecular Weight
130964.705
Theoretical pI
Not Available
GO Classification
Functions
ATP binding / protein kinase activity / protein serine/threonine kinase activity / RNA polymerase II activating transcription factor binding / RNA polymerase II transcription coactivator activity / SMAD binding / transcription corepressor activity / virion binding
Processes
adult walking behavior / anterior/posterior pattern specification / cellular response to hypoxia / DNA damage response, signal transduction by p53 class mediator resulting in transcription of p21 class mediator / embryonic camera-type eye morphogenesis / embryonic retina morphogenesis in camera-type eye / erythrocyte differentiation / eye development / intrinsic apoptotic signaling pathway / intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator / iris morphogenesis / lens induction in camera-type eye / modulation by virus of host morphology or physiology / negative regulation of BMP signaling pathway / negative regulation of neuron apoptotic process / negative regulation of transcription by RNA polymerase II / negative regulation of ubiquitin-dependent protein catabolic process / neuron differentiation / peptidyl-serine phosphorylation / peptidyl-threonine phosphorylation / PML body organization / positive regulation of angiogenesis / positive regulation of cell proliferation / positive regulation of DNA binding / positive regulation of DNA binding transcription factor activity / positive regulation of JNK cascade / positive regulation of protein binding / positive regulation of transcription by RNA polymerase II / positive regulation of transcription, DNA-templated / positive regulation of transforming growth factor beta receptor signaling pathway / protein phosphorylation / regulation of cell cycle / regulation of signal transduction by p53 class mediator / retina layer formation / SMAD protein signal transduction / smoothened signaling pathway / transforming growth factor beta receptor signaling pathway / voluntary musculoskeletal movement
Components
cytoplasm / nuclear body / nucleoplasm / nucleus / PML body / RNA polymerase II transcription factor complex
General Function
Serine/threonine-protein kinase involved in transcription regulation, p53/TP53-mediated cellular apoptosis and regulation of the cell cycle. Acts as a corepressor of several transcription factors, including SMAD1 and POU4F1/Brn3a and probably NK homeodomain transcription factors. Phosphorylates PDX1, ATF1, PML, p53/TP53, CREB1, CTBP1, CBX4, RUNX1, EP300, CTNNB1, HMGA1 and ZBTB4. Inhibits cell growth and promotes apoptosis through the activation of p53/TP53 both at the transcription level and at the protein level (by phosphorylation and indirect acetylation). The phosphorylation of p53/TP53 may be mediated by a p53/TP53-HIPK2-AXIN1 complex. Involved in the response to hypoxia by acting as a transcriptional co-suppressor of HIF1A. Mediates transcriptional activation of TP73. In response to TGFB, cooperates with DAXX to activate JNK. Negative regulator through phosphorylation and subsequent proteasomal degradation of CTNNB1 and the antiapoptotic factor CTBP1. In the Wnt/beta-catenin signaling pathway acts as an intermediate kinase between MAP3K7/TAK1 and NLK to promote the proteasomal degradation of MYB. Phosphorylates CBX4 upon DNA damage and promotes its E3 SUMO-protein ligase activity. Activates CREB1 and ATF1 transcription factors by phosphorylation in response to genotoxic stress. In response to DNA damage, stabilizes PML by phosphorylation. PML, HIPK2 and FBXO3 may act synergically to activate p53/TP53-dependent transactivation. Promotes angiogenesis, and is involved in erythroid differentiation, especially during fetal liver erythropoiesis. Phosphorylation of RUNX1 and EP300 stimulates EP300 transcription regulation activity. Triggers ZBTB4 protein degradation in response to DNA damage. Modulates HMGA1 DNA-binding affinity. In response to high glucose, triggers phosphorylation-mediated subnuclear localization shifting of PDX1. Involved in the regulation of eye size, lens formation and retinal lamination during late embryogenesis.
Specific Function
Atp binding
Pfam Domain Function
Transmembrane Regions
Not Available
Cellular Location
Nucleus
Gene sequence
>lcl|BSEQ0051773|Homeodomain-interacting protein kinase 2 (HIPK2)
ATGGCCCCCGTGTACGAAGGTATGGCCTCACATGTGCAAGTTTTCTCCCCTCACACCCTT
CAATCAAGTGCCTTCTGTAGTGTGAAGAAACTGAAAATAGAGCCGAGTTCCAACTGGGAC
ATGACTGGGTACGGCTCCCACAGCAAAGTGTATAGCCAGAGCAAGAACATCCCCCTGTCG
CAGCCAGCCACCACAACCGTCAGCACCTCCTTGCCGGTCCCAAACCCAAGCCTACCTTAC
GAGCAGACCATCGTCTTCCCAGGAAGCACCGGGCACATCGTGGTCACCTCAGCAAGCAGC
ACTTCTGTCACCGGGCAAGTCCTCGGCGGACCACACAACCTAATGCGTCGAAGCACTGTG
AGCCTCCTTGATACCTACCAAAAATGTGGACTCAAGCGTAAGAGCGAGGAGATCGAGAAC
ACAAGCAGCGTGCAGATCATCGAGGAGCATCCACCCATGATTCAGAATAATGCAAGCGGG
GCCACTGTCGCCACTGCCACCACGTCTACTGCCACCTCCAAAAACAGCGGCTCCAACAGC
GAGGGCGACTATCAGCTGGTGCAGCATGAGGTGCTGTGCTCCATGACCAACACCTACGAG
GTCTTAGAGTTCTTGGGCCGAGGGACGTTTGGGCAAGTGGTCAAGTGCTGGAAACGGGGC
ACCAATGAGATCGTAGCCATCAAGATCCTGAAGAACCACCCATCCTATGCCCGACAAGGT
CAGATTGAAGTGAGCATCCTGGCCCGGTTGAGCACGGAGAGTGCCGATGACTATAACTTC
GTCCGGGCCTACGAATGCTTCCAGCACAAGAACCACACGTGCTTGGTCTTCGAGATGTTG
GAGCAGAACCTCTATGACTTTCTGAAGCAAAACAAGTTTAGCCCCTTGCCCCTCAAATAC
ATTCGCCCAGTTCTCCAGCAGGTAGCCACAGCCCTGATGAAACTCAAAAGCCTAGGTCTT
ATCCACGCTGACCTCAAACCAGAAAACATCATGCTGGTGGATCCATCTAGACAACCATAC
AGAGTCAAGGTCATCGACTTTGGTTCAGCCAGCCACGTCTCCAAGGCTGTGTGCTCCACC
TACTTGCAGTCCAGATATTACAGGGCCCCTGAGATCATCCTTGGTTTACCATTTTGTGAG
GCAATTGACATGTGGTCCCTGGGCTGTGTTATTGCAGAATTGTTCCTGGGTTGGCCGTTA
TATCCAGGAGCTTCGGAGTATGATCAGATTCGGTATATTTCACAAACACAGGGTTTGCCT
GCTGAATATTTATTAAGCGCCGGGACAAAGACAACTAGGTTTTTCAACCGTGACACGGAC
TCACCATATCCTTTGTGGAGACTGAAGACACCAGATGACCATGAAGCAGAGACAGGGATT
AAGTCAAAAGAAGCAAGAAAGTACATTTTCAACTGTTTAGATGATATGGCCCAGGTGAAC
ATGACGACAGATTTGGAAGGGAGCGACATGTTGGTAGAAAAGGCTGACCGGCGGGAGTTC
ATTGACCTGTTGAAGAAGATGCTGACCATTGATGCTGACAAGAGAATCACTCCAATCGAA
ACCCTGAACCATCCCTTTGTCACCATGACACACTTACTCGATTTTCCCCACAGCACACAC
GTCAAATCATGTTTCCAGAACATGGAGATCTGCAAGCGTCGGGTGAATATGTATGACACG
GTGAACCAGAGCAAAACCCCTTTCATCACGCACGTGGCCCCCAGCACGTCCACCAACCTG
ACCATGACCTTTAACAACCAGCTGACCACTGTCCACAACCAGGCTCCCTCCTCTACCAGT
GCCACTATTTCCTTAGCCAATCCCGAAGTCTCCATACTAAACTACCCATCTACACTCTAC
CAGCCCTCAGCGGCATCCATGGCTGCAGTGGCCCAGCGGAGCATGCCCCTGCAGACAGGA
ACAGCCCAGATTTGTGCCCGGCCTGACCCGTTCCAGCAAGCTCTCATCGTGTGTCCCCCC
GGCTTCCAAGGCTTGCAGGCCTCTCCCTCTAAGCACGCTGGCTACTCGGTGCGAATGGAA
AATGCAGTTCCCATCGTCACTCAAGCCCCAGGAGCTCAGCCTCTTCAGATCCAACCAGGT
CTGCTTGCCCAGCAGGCTTGGCCAAGTGGGACCCAGCAGATCCTGCTTCCCCCAGCATGG
CAGCAACTGACTGGAGTGGCCACCCACACATCAGTGCAGCATGCCACCGTGATTCCCGAG
ACCATGGCAGGCACCCAGCAGCTGGCGGACTGGAGAAATACGCATGCTCACGGAAGCCAT
TATAATCCCATCATGCAGCAGCCTGCACTATTGACCGGTCATGTGACCCTTCCAGCAGCA
CAGCCCTTAAATGTGGGTGTGGCCCACGTGATGCGGCAGCAGCCAACCAGCACCACCTCC
TCCCGGAAGAGTAAGCAGCACCAGTCATCTGTGAGAAATGTCTCCACCTGTGAGGTGTCC
TCCTCTCAGGCCATCAGCTCCCCACAGCGATCCAAGCGTGTCAAGGAGAACACACCTCCC
CGCTGTGCCATGGTGCACAGTAGCCCGGCCTGCAGCACCTCGGTCACCTGTGGGTGGGGC
GACGTGGCCTCCAGCACCACCCGGGAACGGCAGCGGCAGACAATTGTCATTCCCGACACT
CCCAGCCCCACGGTCAGCGTCATCACCATCAGCAGTGACACGGACGAGGAGGAGGAACAG
AAACACGCCCCCACCAGCACTGTCTCCAAGCAAAGAAAAAACGTCATCAGCTGTGTCACA
GTCCACGACTCCCCCTACTCCGACTCCTCCAGCAACACCAGCCCCTACTCCGTGCAGCAG
CGTGCTGGGCACAACAATGCCAATGCCTTTGACACCAAGGGGAGCCTGGAGAATCACTGC
ACGGGGAACCCCCGAACCATCATCGTGCCACCCCTGAAAACCCAGGCCAGCGAAGTATTG
GTGGAGTGTGATAGCCTGGTGCCAGTCAACACCAGTCACCACTCGTCCTCCTACAAGTCC
AAGTCCTCCAGCAACGTGACCTCCACCAGCGGTCACTCTTCAGGGAGCTCATCTGGAGCC
ATCACCTACCGGCAGCAGCGGCCGGGCCCCCACTTCCAGCAGCAGCAGCCACTCAATCTC
AGCCAGGCTCAGCAGCACATCACCACGGACCGCACTGGGAGCCACCGAAGGCAGCAGGCC
TACATCACTCCCACCATGGCCCAGGCTCCGTACTCCTTCCCGCACAACAGCCCCAGCCAC
GGCACTGTGCACCCGCATCTGGCTGCAGCCGCTGCCGCTGCCCACCTCCCCACCCAGCCC
CACCTCTACACCTACACTGCGCCGGCGGCCCTGGGCTCCACCGGCACCGTGGCCCACCTG
GTGGCCTCGCAAGGCTCTGCGCGCCACACCGTGCAGCACACTGCCTACCCAGCCAGCATC
GTCCACCAGGTCCCCGTGAGCATGGGCCCCCGGGTCCTGCCCTCGCCCACCATCCACCCG
AGTCAGTATCCAGCCCAATTTGCCCACCAGACCTACATCAGCGCCTCGCCAGCCTCCACC
GTCTACACTGGATACCCACTGAGCCCCGCCAAGGTCAACCAGTACCCTTACATATAA
Chromosome Location
7
Locus
7q34
External Identifiers
ResourceLink
UniProtKB IDQ9H2X6
UniProtKB Entry NameHIPK2_HUMAN
HGNC IDHGNC:14402
General References
  1. Wang Y, Hofmann TG, Runkel L, Haaf T, Schaller H, Debatin K, Hug H: Isolation and characterization of cDNAs for the protein kinase HIPK2. Biochim Biophys Acta. 2001 Mar 19;1518(1-2):168-72. [Article]
  2. Hillier LW, Fulton RS, Fulton LA, Graves TA, Pepin KH, Wagner-McPherson C, Layman D, Maas J, Jaeger S, Walker R, Wylie K, Sekhon M, Becker MC, O'Laughlin MD, Schaller ME, Fewell GA, Delehaunty KD, Miner TL, Nash WE, Cordes M, Du H, Sun H, Edwards J, Bradshaw-Cordum H, Ali J, Andrews S, Isak A, Vanbrunt A, Nguyen C, Du F, Lamar B, Courtney L, Kalicki J, Ozersky P, Bielicki L, Scott K, Holmes A, Harkins R, Harris A, Strong CM, Hou S, Tomlinson C, Dauphin-Kohlberg S, Kozlowicz-Reilly A, Leonard S, Rohlfing T, Rock SM, Tin-Wollam AM, Abbott A, Minx P, Maupin R, Strowmatt C, Latreille P, Miller N, Johnson D, Murray J, Woessner JP, Wendl MC, Yang SP, Schultz BR, Wallis JW, Spieth J, Bieri TA, Nelson JO, Berkowicz N, Wohldmann PE, Cook LL, Hickenbotham MT, Eldred J, Williams D, Bedell JA, Mardis ER, Clifton SW, Chissoe SL, Marra MA, Raymond C, Haugen E, Gillett W, Zhou Y, James R, Phelps K, Iadanoto S, Bubb K, Simms E, Levy R, Clendenning J, Kaul R, Kent WJ, Furey TS, Baertsch RA, Brent MR, Keibler E, Flicek P, Bork P, Suyama M, Bailey JA, Portnoy ME, Torrents D, Chinwalla AT, Gish WR, Eddy SR, McPherson JD, Olson MV, Eichler EE, Green ED, Waterston RH, Wilson RK: The DNA sequence of human chromosome 7. Nature. 2003 Jul 10;424(6945):157-64. [Article]
  3. Li X, Wang Y, Debatin KM, Hug H: The serine/threonine kinase HIPK2 interacts with TRADD, but not with CD95 or TNF-R1 in 293T cells. Biochem Biophys Res Commun. 2000 Oct 22;277(2):513-7. [Article]
  4. Pierantoni GM, Bulfone A, Pentimalli F, Fedele M, Iuliano R, Santoro M, Chiariotti L, Ballabio A, Fusco A: The homeodomain-interacting protein kinase 2 gene is expressed late in embryogenesis and preferentially in retina, muscle, and neural tissues. Biochem Biophys Res Commun. 2002 Jan 25;290(3):942-7. [Article]
  5. Wang Y, Marion Schneider E, Li X, Duttenhofer I, Debatin K, Hug H: HIPK2 associates with RanBPM. Biochem Biophys Res Commun. 2002 Sep 13;297(1):148-53. [Article]
  6. Kim EJ, Park JS, Um SJ: Identification and characterization of HIPK2 interacting with p73 and modulating functions of the p53 family in vivo. J Biol Chem. 2002 Aug 30;277(35):32020-8. Epub 2002 Mar 29. [Article]
  7. Hofmann TG, Moller A, Sirma H, Zentgraf H, Taya Y, Droge W, Will H, Schmitz ML: Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat Cell Biol. 2002 Jan;4(1):1-10. [Article]
  8. Moller A, Sirma H, Hofmann TG, Rueffer S, Klimczak E, Droge W, Will H, Schmitz ML: PML is required for homeodomain-interacting protein kinase 2 (HIPK2)-mediated p53 phosphorylation and cell cycle arrest but is dispensable for the formation of HIPK domains. Cancer Res. 2003 Aug 1;63(15):4310-4. [Article]
  9. Hofmann TG, Stollberg N, Schmitz ML, Will H: HIPK2 regulates transforming growth factor-beta-induced c-Jun NH(2)-terminal kinase activation and apoptosis in human hepatoma cells. Cancer Res. 2003 Dec 1;63(23):8271-7. [Article]
  10. Tomasini R, Samir AA, Carrier A, Isnardon D, Cecchinelli B, Soddu S, Malissen B, Dagorn JC, Iovanna JL, Dusetti NJ: TP53INP1s and homeodomain-interacting protein kinase-2 (HIPK2) are partners in regulating p53 activity. J Biol Chem. 2003 Sep 26;278(39):37722-9. Epub 2003 Jul 7. [Article]
  11. Harada J, Kokura K, Kanei-Ishii C, Nomura T, Khan MM, Kim Y, Ishii S: Requirement of the co-repressor homeodomain-interacting protein kinase 2 for ski-mediated inhibition of bone morphogenetic protein-induced transcriptional activation. J Biol Chem. 2003 Oct 3;278(40):38998-9005. Epub 2003 Jul 21. [Article]
  12. Moller A, Sirma H, Hofmann TG, Staege H, Gresko E, Ludi KS, Klimczak E, Droge W, Will H, Schmitz ML: Sp100 is important for the stimulatory effect of homeodomain-interacting protein kinase-2 on p53-dependent gene expression. Oncogene. 2003 Nov 27;22(54):8731-7. [Article]
  13. Kim YH, Sung KS, Lee SJ, Kim YO, Choi CY, Kim Y: Desumoylation of homeodomain-interacting protein kinase 2 (HIPK2) through the cytoplasmic-nuclear shuttling of the SUMO-specific protease SENP1. FEBS Lett. 2005 Nov 7;579(27):6272-8. Epub 2005 Oct 19. [Article]
  14. Gresko E, Roscic A, Ritterhoff S, Vichalkovski A, del Sal G, Schmitz ML: Autoregulatory control of the p53 response by caspase-mediated processing of HIPK2. EMBO J. 2006 May 3;25(9):1883-94. Epub 2006 Apr 6. [Article]
  15. Roscic A, Moller A, Calzado MA, Renner F, Wimmer VC, Gresko E, Ludi KS, Schmitz ML: Phosphorylation-dependent control of Pc2 SUMO E3 ligase activity by its substrate protein HIPK2. Mol Cell. 2006 Oct 6;24(1):77-89. [Article]
  16. Zhang Q, Wang Y: Homeodomain-interacting protein kinase-2 (HIPK2) phosphorylates HMGA1a at Ser-35, Thr-52, and Thr-77 and modulates its DNA binding affinity. J Proteome Res. 2007 Dec;6(12):4711-9. Epub 2007 Oct 26. [Article]
  17. Wee HJ, Voon DC, Bae SC, Ito Y: PEBP2-beta/CBF-beta-dependent phosphorylation of RUNX1 and p300 by HIPK2: implications for leukemogenesis. Blood. 2008 Nov 1;112(9):3777-87. doi: 10.1182/blood-2008-01-134122. Epub 2008 Aug 11. [Article]
  18. Choi DW, Seo YM, Kim EA, Sung KS, Ahn JW, Park SJ, Lee SR, Choi CY: Ubiquitination and degradation of homeodomain-interacting protein kinase 2 by WD40 repeat/SOCS box protein WSB-1. J Biol Chem. 2008 Feb 22;283(8):4682-9. Epub 2007 Dec 19. [Article]
  19. Shima Y, Shima T, Chiba T, Irimura T, Pandolfi PP, Kitabayashi I: PML activates transcription by protecting HIPK2 and p300 from SCFFbx3-mediated degradation. Mol Cell Biol. 2008 Dec;28(23):7126-38. doi: 10.1128/MCB.00897-08. Epub 2008 Sep 22. [Article]
  20. Winter M, Sombroek D, Dauth I, Moehlenbrink J, Scheuermann K, Crone J, Hofmann TG: Control of HIPK2 stability by ubiquitin ligase Siah-1 and checkpoint kinases ATM and ATR. Nat Cell Biol. 2008 Jul;10(7):812-24. doi: 10.1038/ncb1743. Epub 2008 Jun 8. [Article]
  21. Nardinocchi L, Puca R, Guidolin D, Belloni AS, Bossi G, Michiels C, Sacchi A, Onisto M, D'Orazi G: Transcriptional regulation of hypoxia-inducible factor 1alpha by HIPK2 suggests a novel mechanism to restrain tumor growth. Biochim Biophys Acta. 2009 Feb;1793(2):368-77. doi: 10.1016/j.bbamcr.2008.10.013. Epub 2008 Nov 6. [Article]
  22. Oppermann FS, Gnad F, Olsen JV, Hornberger R, Greff Z, Keri G, Mann M, Daub H: Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics. 2009 Jul;8(7):1751-64. doi: 10.1074/mcp.M800588-MCP200. Epub 2009 Apr 15. [Article]
  23. Gresko E, Ritterhoff S, Sevilla-Perez J, Roscic A, Frobius K, Kotevic I, Vichalkovski A, Hess D, Hemmings BA, Schmitz ML: PML tumor suppressor is regulated by HIPK2-mediated phosphorylation in response to DNA damage. Oncogene. 2009 Feb 5;28(5):698-708. doi: 10.1038/onc.2008.420. Epub 2008 Nov 17. [Article]
  24. Yamada D, Perez-Torrado R, Filion G, Caly M, Jammart B, Devignot V, Sasai N, Ravassard P, Mallet J, Sastre-Garau X, Schmitz ML, Defossez PA: The human protein kinase HIPK2 phosphorylates and downregulates the methyl-binding transcription factor ZBTB4. Oncogene. 2009 Jul 9;28(27):2535-44. doi: 10.1038/onc.2009.109. Epub 2009 May 18. [Article]
  25. Nardinocchi L, Puca R, Sacchi A, Rechavi G, Givol D, D'Orazi G: Targeting hypoxia in cancer cells by restoring homeodomain interacting protein-kinase 2 and p53 activity and suppressing HIF-1alpha. PLoS One. 2009 Aug 28;4(8):e6819. doi: 10.1371/journal.pone.0006819. [Article]
  26. An R, da Silva Xavier G, Semplici F, Vakhshouri S, Hao HX, Rutter J, Pagano MA, Meggio F, Pinna LA, Rutter GA: Pancreatic and duodenal homeobox 1 (PDX1) phosphorylation at serine-269 is HIPK2-dependent and affects PDX1 subnuclear localization. Biochem Biophys Res Commun. 2010 Aug 20;399(2):155-61. doi: 10.1016/j.bbrc.2010.07.035. Epub 2010 Jul 15. [Article]
  27. Kim EA, Kim JE, Sung KS, Choi DW, Lee BJ, Choi CY: Homeodomain-interacting protein kinase 2 (HIPK2) targets beta-catenin for phosphorylation and proteasomal degradation. Biochem Biophys Res Commun. 2010 Apr 16;394(4):966-71. doi: 10.1016/j.bbrc.2010.03.099. Epub 2010 Mar 20. [Article]
  28. Hailemariam K, Iwasaki K, Huang BW, Sakamoto K, Tsuji Y: Transcriptional regulation of ferritin and antioxidant genes by HIPK2 under genotoxic stress. J Cell Sci. 2010 Nov 15;123(Pt 22):3863-71. doi: 10.1242/jcs.073627. Epub 2010 Oct 27. [Article]
  29. Sakamoto K, Huang BW, Iwasaki K, Hailemariam K, Ninomiya-Tsuji J, Tsuji Y: Regulation of genotoxic stress response by homeodomain-interacting protein kinase 2 through phosphorylation of cyclic AMP response element-binding protein at serine 271. Mol Biol Cell. 2010 Aug 15;21(16):2966-74. doi: 10.1091/mbc.E10-01-0015. Epub 2010 Jun 23. [Article]
  30. de la Vega L, Frobius K, Moreno R, Calzado MA, Geng H, Schmitz ML: Control of nuclear HIPK2 localization and function by a SUMO interaction motif. Biochim Biophys Acta. 2011 Feb;1813(2):283-97. doi: 10.1016/j.bbamcr.2010.11.022. Epub 2010 Dec 8. [Article]
  31. Sung KS, Lee YA, Kim ET, Lee SR, Ahn JH, Choi CY: Role of the SUMO-interacting motif in HIPK2 targeting to the PML nuclear bodies and regulation of p53. Exp Cell Res. 2011 Apr 15;317(7):1060-70. doi: 10.1016/j.yexcr.2010.12.016. Epub 2010 Dec 28. [Article]
  32. Sombroek D, Hofmann TG: How cells switch HIPK2 on and off. Cell Death Differ. 2009 Feb;16(2):187-94. doi: 10.1038/cdd.2008.154. Epub 2008 Oct 31. [Article]
  33. Bitomsky N, Hofmann TG: Apoptosis and autophagy: Regulation of apoptosis by DNA damage signalling - roles of p53, p73 and HIPK2. FEBS J. 2009 Nov;276(21):6074-83. doi: 10.1111/j.1742-4658.2009.07331.x. Epub 2009 Sep 29. [Article]
  34. Nardinocchi L, Puca R, Givol D, D'Orazi G: HIPK2-a therapeutical target to be (re)activated for tumor suppression: role in p53 activation and HIF-1alpha inhibition. Cell Cycle. 2010 Apr 1;9(7):1270-5. [Article]
  35. Puca R, Nardinocchi L, Givol D, D'Orazi G: Regulation of p53 activity by HIPK2: molecular mechanisms and therapeutical implications in human cancer cells. Oncogene. 2010 Aug 5;29(31):4378-87. doi: 10.1038/onc.2010.183. Epub 2010 May 31. [Article]
  36. Pelisch F, Pozzi B, Risso G, Munoz MJ, Srebrow A: DNA damage-induced heterogeneous nuclear ribonucleoprotein K sumoylation regulates p53 transcriptional activation. J Biol Chem. 2012 Aug 31;287(36):30789-99. doi: 10.1074/jbc.M112.390120. Epub 2012 Jul 23. [Article]
  37. Bian Y, Song C, Cheng K, Dong M, Wang F, Huang J, Sun D, Wang L, Ye M, Zou H: An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics. 2014 Jan 16;96:253-62. doi: 10.1016/j.jprot.2013.11.014. Epub 2013 Nov 22. [Article]
  38. Hendriks IA, Lyon D, Young C, Jensen LJ, Vertegaal AC, Nielsen ML: Site-specific mapping of the human SUMO proteome reveals co-modification with phosphorylation. Nat Struct Mol Biol. 2017 Mar;24(3):325-336. doi: 10.1038/nsmb.3366. Epub 2017 Jan 23. [Article]
  39. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, Edkins S, O'Meara S, Vastrik I, Schmidt EE, Avis T, Barthorpe S, Bhamra G, Buck G, Choudhury B, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jenkinson A, Jones D, Menzies A, Mironenko T, Perry J, Raine K, Richardson D, Shepherd R, Small A, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Cahill DP, Louis DN, Goldstraw P, Nicholson AG, Brasseur F, Looijenga L, Weber BL, Chiew YE, DeFazio A, Greaves MF, Green AR, Campbell P, Birney E, Easton DF, Chenevix-Trench G, Tan MH, Khoo SK, Teh BT, Yuen ST, Leung SY, Wooster R, Futreal PA, Stratton MR: Patterns of somatic mutation in human cancer genomes. Nature. 2007 Mar 8;446(7132):153-8. [Article]

Drug Relations

Drug Relations
DrugBank IDNameDrug groupPharmacological action?ActionsDetails
DB12010Fostamatinibapproved, investigationalunknowninhibitorDetails