You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on DrugBank.
Identification
NameDiphenidol
Accession NumberDB01231  (APRD00929)
TypeSmall Molecule
GroupsApproved, Withdrawn
DescriptionDiphenidol is an antiemetic agent used in the treatment of vomiting and vertigo. Diphenidol overdose may result in serious toxicity in children.
Structure
Thumb
Synonyms
alpha,alpha-Diphenyl-1-piperidinebutanol
Difenidol
Difenidolo
Difenidolum
Diphenidol
Diphenyl(3-(1-piperidyl)propyl)carbinol
External Identifiers Not Available
Approved Prescription ProductsNot Available
Approved Generic Prescription ProductsNot Available
Approved Over the Counter ProductsNot Available
Unapproved/Other Products Not Available
International Brands
NameCompany
SatanolonTatsumi Kagaku
VertergeNot Available
VontrolSanfer
YesdolNot Available
Brand mixturesNot Available
Salts
Name/CASStructureProperties
Diphenidol Hydrochloride
Thumb
  • InChI Key: AVZIYZHXZAYGJS-UHFFFAOYSA-N
  • Monoisotopic Mass: 345.18594223
  • Average Mass: 345.906
DBSALT000395
Categories
UNIINQO8R319LY
CAS number972-02-1
WeightAverage: 309.4452
Monoisotopic: 309.209264491
Chemical FormulaC21H27NO
InChI KeyOGAKLTJNUQRZJU-UHFFFAOYSA-N
InChI
InChI=1S/C21H27NO/c23-21(19-11-4-1-5-12-19,20-13-6-2-7-14-20)15-10-18-22-16-8-3-9-17-22/h1-2,4-7,11-14,23H,3,8-10,15-18H2
IUPAC Name
1,1-diphenyl-4-(piperidin-1-yl)butan-1-ol
SMILES
OC(CCCN1CCCCC1)(C1=CC=CC=C1)C1=CC=CC=C1
Pharmacology
IndicationFor use in the prevention and symptomatic treatment of peripheral (labyrinthine) vertigo and associated nausea and vomiting that occur in such conditions as Meniere's disease and surgery of the middle and inner ear. Also for the control of nausea and vomiting associated with postoperative states, malignant neoplasms, labyrinthine disturbances, antineoplastic agent therapy, radiation sickness, and infectious diseases.
Structured Indications Not Available
PharmacodynamicsDiphenidol is used for control of nausea and vomiting. It has an antivertigo effect on the vestibular apparatus, inhibiting the chemoreceptor trigger zone to control nausea and vomiting, thus preventing motion sickness.
Mechanism of actionThe mechanism by which diphenidol exerts its antiemetic and antivertigo effects is not precisely known. It is thought to diminish vestibular stimulation and depress labyrinthine function and as an antimuscarinic agent. An action on the medullary chemoreceptive trigger zone may also be involved in the antiemetic effect. Diphenidol has no significant sedative, tranquilizing, or antihistaminic action. It has a weak peripheral anticholinergic effect.
TargetKindPharmacological actionActionsOrganismUniProt ID
Muscarinic acetylcholine receptor M2Proteinyes
antagonist
HumanP08172 details
Muscarinic acetylcholine receptor M1Proteinyes
antagonist
HumanP11229 details
Muscarinic acetylcholine receptor M3Proteinyes
antagonist
HumanP20309 details
Related Articles
AbsorptionWell absorbed from gastrointestinal tract following oral administration.
Volume of distributionNot Available
Protein bindingNot Available
MetabolismNot Available
Route of eliminationNot Available
Half life4 hours
ClearanceNot Available
ToxicitySymptoms of overdose include drowsiness (severe); shortness of breath or troubled breathing; unusual tiredness or weakness (severe).
Affected organisms
  • Humans and other mammals
PathwaysNot Available
SNP Mediated EffectsNot Available
SNP Mediated Adverse Drug ReactionsNot Available
Interactions
Drug InteractionsNot Available
Food InteractionsNot Available
References
Synthesis Reference

Miescher, K. and Marxer, A.; U.S. Patent 2,411,664; November 26, 1946; assigned to Ciba
Pharmaceutical Products, Inc.

General References
  1. Link [Link]
External Links
ATC CodesNot Available
AHFS CodesNot Available
PDB EntriesNot Available
FDA labelDownload (374 KB)
MSDSDownload (73.5 KB)
ADMET
Predicted ADMET features
PropertyValueProbability
Human Intestinal Absorption+0.9296
Blood Brain Barrier+0.9606
Caco-2 permeable+0.6951
P-glycoprotein substrateSubstrate0.7254
P-glycoprotein inhibitor IInhibitor0.5603
P-glycoprotein inhibitor IINon-inhibitor0.7523
Renal organic cation transporterInhibitor0.7647
CYP450 2C9 substrateNon-substrate0.8378
CYP450 2D6 substrateNon-substrate0.7102
CYP450 3A4 substrateNon-substrate0.5631
CYP450 1A2 substrateNon-inhibitor0.9046
CYP450 2C9 inhibitorNon-inhibitor0.9255
CYP450 2D6 inhibitorInhibitor0.9373
CYP450 2C19 inhibitorNon-inhibitor0.9025
CYP450 3A4 inhibitorNon-inhibitor0.7862
CYP450 inhibitory promiscuityLow CYP Inhibitory Promiscuity0.9362
Ames testNon AMES toxic0.8763
CarcinogenicityNon-carcinogens0.924
BiodegradationNot ready biodegradable0.9177
Rat acute toxicity2.6101 LD50, mol/kg Not applicable
hERG inhibition (predictor I)Strong inhibitor0.6086
hERG inhibition (predictor II)Inhibitor0.6009
ADMET data is predicted using admetSAR, a free tool for evaluating chemical ADMET properties. (23092397 )
Pharmacoeconomics
ManufacturersNot Available
Packagers
  • Professional Co.
Dosage formsNot Available
Prices
Unit descriptionCostUnit
Diphenidol hcl powder32.4USD g
DrugBank does not sell nor buy drugs. Pricing information is supplied for informational purposes only.
PatentsNot Available
Properties
StateSolid
Experimental Properties
PropertyValueSource
melting point212-214Miescher, K. and Marxer, A.; U.S. Patent 2,411,664; November 26, 1946; assigned to Ciba Pharmaceutical Products, Inc.
logP4.3Not Available
Predicted Properties
PropertyValueSource
Water Solubility0.00587 mg/mLALOGPS
logP4.08ALOGPS
logP4.22ChemAxon
logS-4.7ALOGPS
pKa (Strongest Acidic)13.4ChemAxon
pKa (Strongest Basic)9.23ChemAxon
Physiological Charge1ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area23.47 Å2ChemAxon
Rotatable Bond Count6ChemAxon
Refractivity96.92 m3·mol-1ChemAxon
Polarizability36.66 Å3ChemAxon
Number of Rings3ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Mass Spec (NIST)Not Available
Spectra
Spectrum TypeDescriptionSplash Key
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, NegativeNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, NegativeNot Available
Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as diphenylmethanes. These are compounds containing a diphenylmethane moiety, which consists of a methane wherein two hydrogen atoms are replaced by two phenyl groups.
KingdomOrganic compounds
Super ClassBenzenoids
ClassBenzene and substituted derivatives
Sub ClassDiphenylmethanes
Direct ParentDiphenylmethanes
Alternative Parents
Substituents
  • Diphenylmethane
  • Phenylbutylamine
  • Aralkylamine
  • Piperidine
  • Tertiary alcohol
  • Tertiary aliphatic amine
  • Tertiary amine
  • Azacycle
  • Organoheterocyclic compound
  • Hydrocarbon derivative
  • Aromatic alcohol
  • Organooxygen compound
  • Organonitrogen compound
  • Amine
  • Alcohol
  • Aromatic heteromonocyclic compound
Molecular FrameworkAromatic heteromonocyclic compounds
External Descriptors

Targets

Kind
Protein
Organism
Human
Pharmacological action
yes
Actions
antagonist
General Function:
G-protein coupled acetylcholine receptor activity
Specific Function:
The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is adenylate cyclase inhibition. Signaling promotes phospholipase C activity, leading to the release of inositol trisphosphate (IP3); this then trigge...
Gene Name:
CHRM2
Uniprot ID:
P08172
Molecular Weight:
51714.605 Da
References
  1. Pelat M, Lazartigues E, Tran MA, Gharib C, Montastruc JL, Montastruc P, Rascol O: Characterization of the central muscarinic cholinoceptors involved in the cholinergic pressor response in anesthetized dogs. Eur J Pharmacol. 1999 Aug 27;379(2-3):117-24. [PubMed:10497897 ]
  2. Lazartigues E, Freslon JL, Tellioglu T, Brefel-Courbon C, Pelat M, Tran MA, Montastruc JL, Rascol O: Pressor and bradycardic effects of tacrine and other acetylcholinesterase inhibitors in the rat. Eur J Pharmacol. 1998 Nov 13;361(1):61-71. [PubMed:9851542 ]
  3. Kovacs I, Yamamura HI, Waite SL, Varga EV, Roeske WR: Pharmacological comparison of the cloned human and rat M2 muscarinic receptor genes expressed in the murine fibroblast (B82) cell line. J Pharmacol Exp Ther. 1998 Feb;284(2):500-7. [PubMed:9454790 ]
  4. Pavia J, Munoz M, Jimenez E, Martos F, Gonzalez-Correa JA, De la Cruz JP, Garcia V, Sanchez de la Cuesta F: Pharmacological characterization and distribution of muscarinic receptors in human placental syncytiotrophoblast brush-border and basal plasma membranes. Eur J Pharmacol. 1997 Feb 12;320(2-3):209-14. [PubMed:9059856 ]
  5. Jovanovic A, Grbovic L, Tulic I: Endothelium-dependent relaxation in response to acetylcholine in the human uterine artery. Eur J Pharmacol. 1994 Apr 21;256(2):131-9. [PubMed:8050463 ]
  6. Braverman AS, Tallarida RJ, Ruggieri MR Sr: Interaction between muscarinic receptor subtype signal transduction pathways mediating bladder contraction. Am J Physiol Regul Integr Comp Physiol. 2002 Sep;283(3):R663-8. [PubMed:12185001 ]
  7. Varoli L, Angeli P, Burnelli S, Marucci G, Recanatini M: Synthesis and antagonistic activity at muscarinic receptor subtypes of some 2-carbonyl derivatives of diphenidol. Bioorg Med Chem. 1999 Sep;7(9):1837-44. [PubMed:10530931 ]
  8. Waelbroeck M, Camus J, Tastenoy M, Mutschler E, Strohmann C, Tacke R, Lambrecht G, Christophe J: Stereoselectivity of (R)- and (S)-hexahydro-difenidol binding to neuroblastoma M1, cardiac M2, pancreatic M3, and striatum M4 muscarinic receptors. Chirality. 1991;3(2):118-23. [PubMed:1863523 ]
Kind
Protein
Organism
Human
Pharmacological action
yes
Actions
antagonist
General Function:
Phosphatidylinositol phospholipase c activity
Specific Function:
The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is Pi turnover.
Gene Name:
CHRM1
Uniprot ID:
P11229
Molecular Weight:
51420.375 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [PubMed:17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [PubMed:17016423 ]
  3. Waelbroeck M, Camus J, Tastenoy M, Mutschler E, Strohmann C, Tacke R, Lambrecht G, Christophe J: Stereoselectivity of (R)- and (S)-hexahydro-difenidol binding to neuroblastoma M1, cardiac M2, pancreatic M3, and striatum M4 muscarinic receptors. Chirality. 1991;3(2):118-23. [PubMed:1863523 ]
Kind
Protein
Organism
Human
Pharmacological action
yes
Actions
antagonist
General Function:
Receptor activity
Specific Function:
The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is Pi turnover.
Gene Name:
CHRM3
Uniprot ID:
P20309
Molecular Weight:
66127.445 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [PubMed:17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [PubMed:17016423 ]
  3. Braverman AS, Tallarida RJ, Ruggieri MR Sr: Interaction between muscarinic receptor subtype signal transduction pathways mediating bladder contraction. Am J Physiol Regul Integr Comp Physiol. 2002 Sep;283(3):R663-8. [PubMed:12185001 ]
  4. Varoli L, Angeli P, Burnelli S, Marucci G, Recanatini M: Synthesis and antagonistic activity at muscarinic receptor subtypes of some 2-carbonyl derivatives of diphenidol. Bioorg Med Chem. 1999 Sep;7(9):1837-44. [PubMed:10530931 ]
  5. Waelbroeck M, Camus J, Tastenoy M, Mutschler E, Strohmann C, Tacke R, Lambrecht G, Christophe J: Stereoselectivity of (R)- and (S)-hexahydro-difenidol binding to neuroblastoma M1, cardiac M2, pancreatic M3, and striatum M4 muscarinic receptors. Chirality. 1991;3(2):118-23. [PubMed:1863523 ]
Comments
comments powered by Disqus
Drug created on June 13, 2005 07:24 / Updated on August 17, 2016 12:23