Identification

Name
Glycodiazine
Accession Number
DB01382
Type
Small Molecule
Groups
Approved, Investigational
Description

Glycodiazine is used with diet to lower blood glucose by increasing the secretion of insulin from pancreas and increasing the sensitivity of peripheral tissues to insulin. The mechanism of action of glycodiazine in lowering blood glucose appears to be dependent on stimulating the release of insulin from functioning pancreatic beta cells, and increasing sensitivity of peripheral tissues to insulin. Glycodiazine likely binds to ATP-sensitive potassium channel receptors on the pancreatic cell surface, reducing potassium conductance and causing depolarization of the membrane. Membrane depolarization stimulates calcium ion influx through voltage-sensitive calcium channels. This increase in intracellular calcium ion concentration induces the secretion of insulin. It is used for the concomitant use with insulin for the treatment of noninsulin-dependent (type 2) diabetes mellitus.

Structure
Thumb
Synonyms
  • Glidiazine
  • Glymidine
International/Other Brands
Glycanol (Bayer) / Glyconormal (Bayer) / Gondafon (Schering) / Lycanol (Bayer) / Redul (Bayer)
Categories
UNII
4C5I4BQZ8F
CAS number
339-44-6
Weight
Average: 309.341
Monoisotopic: 309.078326673
Chemical Formula
C13H15N3O4S
InChI Key
QFWPJPIVLCBXFJ-UHFFFAOYSA-N
InChI
InChI=1S/C13H15N3O4S/c1-19-7-8-20-11-9-14-13(15-10-11)16-21(17,18)12-5-3-2-4-6-12/h2-6,9-10H,7-8H2,1H3,(H,14,15,16)
IUPAC Name
N-[5-(2-methoxyethoxy)pyrimidin-2-yl]benzenesulfonamide
SMILES
COCCOC1=CN=C(NS(=O)(=O)C2=CC=CC=C2)N=C1

Pharmacology

Indication

Glycodiazine is used concomitantly with insulin for the treatment of noninsulin-dependent (type 2) diabetes mellitus.

Structured Indications
Not Available
Pharmacodynamics

Glycodiazine is used with diet to lower blood glucose by increasing the secretion of insulin from pancreas and increasing the sensitivity of peripheral tissues to insulin.

Mechanism of action

The mechanism of action of glycodiazine in lowering blood glucose appears to be dependent on stimulating the release of insulin from functioning pancreatic beta cells, and increasing sensitivity of peripheral tissues to insulin. Glycodiazine likely binds to ATP-sensitive potassium channel receptors on the pancreatic cell surface, reducing potassium conductance and causing depolarization of the membrane. Membrane depolarization stimulates calcium ion influx through voltage-sensitive calcium channels. The rise in intracellular calcium leads to increased fusion of insulin granulae with the cell membrane, and therefore increased secretion of (pro)insulin.

TargetActionsOrganism
AATP-sensitive inward rectifier potassium channel 1
other/unknown
Human
UATP-binding cassette sub-family C member 8
inducer
Human
Absorption

Rapidly and completely absorbed following oral administration.

Volume of distribution
Not Available
Protein binding

90% bound to plasma proteins.

Metabolism
Not Available
Route of elimination
Not Available
Half life

4 hours.

Clearance
Not Available
Toxicity

Severe hypoglycemic reactions with coma, seizure, or other neurological impairment.

Affected organisms
  • Humans and other mammals
Pathways
Not Available
Pharmacogenomic Effects/ADRs
Not Available

Interactions

Drug Interactions
Not Available
Food Interactions
Not Available

References

Synthesis Reference

U.S. Patent 3,275,635.

General References
Not Available
External Links
Human Metabolome Database
HMDB15461
PubChem Compound
9565
PubChem Substance
46507076
ChemSpider
9190
ChEBI
31660
ChEMBL
CHEMBL1697838
Therapeutic Targets Database
DAP000921
PharmGKB
PA164748839
ATC Codes
A10BC01 — Glymidine

Clinical Trials

Clinical Trials
PhaseStatusPurposeConditionsCount
Not AvailableCompletedNot AvailableType 2 Diabetes Mellitus3

Pharmacoeconomics

Manufacturers
Not Available
Packagers
Not Available
Dosage forms
Not Available
Prices
Not Available
Patents
Not Available

Properties

State
Solid
Experimental Properties
PropertyValueSource
melting point (°C)220-223U.S. Patent 3,275,635.
Predicted Properties
PropertyValueSource
Water Solubility0.124 mg/mLALOGPS
logP1.27ALOGPS
logP1.01ChemAxon
logS-3.4ALOGPS
pKa (Strongest Acidic)6.92ChemAxon
pKa (Strongest Basic)-1.4ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count6ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area90.41 Å2ChemAxon
Rotatable Bond Count6ChemAxon
Refractivity77.01 m3·mol-1ChemAxon
Polarizability31.29 Å3ChemAxon
Number of Rings2ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Predicted ADMET features
PropertyValueProbability
Human Intestinal Absorption+0.9892
Blood Brain Barrier+0.7927
Caco-2 permeable-0.6157
P-glycoprotein substrateNon-substrate0.6453
P-glycoprotein inhibitor INon-inhibitor0.5185
P-glycoprotein inhibitor IINon-inhibitor0.7509
Renal organic cation transporterNon-inhibitor0.6957
CYP450 2C9 substrateNon-substrate0.6516
CYP450 2D6 substrateNon-substrate0.8178
CYP450 3A4 substrateSubstrate0.5243
CYP450 1A2 substrateNon-inhibitor0.5153
CYP450 2C9 inhibitorInhibitor0.5078
CYP450 2D6 inhibitorNon-inhibitor0.8897
CYP450 2C19 inhibitorNon-inhibitor0.514
CYP450 3A4 inhibitorNon-inhibitor0.6157
CYP450 inhibitory promiscuityHigh CYP Inhibitory Promiscuity0.5638
Ames testNon AMES toxic0.6181
CarcinogenicityNon-carcinogens0.8573
BiodegradationNot ready biodegradable1.0
Rat acute toxicity2.0305 LD50, mol/kg Not applicable
hERG inhibition (predictor I)Weak inhibitor0.6503
hERG inhibition (predictor II)Non-inhibitor0.5704
ADMET data is predicted using admetSAR, a free tool for evaluating chemical ADMET properties. (23092397)

Spectra

Mass Spec (NIST)
Not Available
Spectra
SpectrumSpectrum TypeSplash Key
Predicted GC-MS Spectrum - GC-MSPredicted GC-MSNot Available
Predicted MS/MS Spectrum - 10V, Positive (Annotated)Predicted LC-MS/MSNot Available
Predicted MS/MS Spectrum - 20V, Positive (Annotated)Predicted LC-MS/MSNot Available
Predicted MS/MS Spectrum - 40V, Positive (Annotated)Predicted LC-MS/MSNot Available
Predicted MS/MS Spectrum - 10V, Negative (Annotated)Predicted LC-MS/MSNot Available
Predicted MS/MS Spectrum - 20V, Negative (Annotated)Predicted LC-MS/MSNot Available
Predicted MS/MS Spectrum - 40V, Negative (Annotated)Predicted LC-MS/MSNot Available

Taxonomy

Description
This compound belongs to the class of organic compounds known as benzenesulfonamides. These are organic compounds containing a sulfonamide group that is S-linked to a benzene ring.
Kingdom
Organic compounds
Super Class
Benzenoids
Class
Benzene and substituted derivatives
Sub Class
Benzenesulfonamides
Direct Parent
Benzenesulfonamides
Alternative Parents
Benzenesulfonyl compounds / Alkyl aryl ethers / Pyrimidines and pyrimidine derivatives / Organosulfonamides / Heteroaromatic compounds / Aminosulfonyl compounds / Dialkyl ethers / Azacyclic compounds / Organopnictogen compounds / Organonitrogen compounds
show 2 more
Substituents
Benzenesulfonamide / Benzenesulfonyl group / Alkyl aryl ether / Pyrimidine / Organosulfonic acid amide / Organic sulfonic acid or derivatives / Organosulfonic acid or derivatives / Sulfonyl / Aminosulfonyl compound / Heteroaromatic compound
show 13 more
Molecular Framework
Aromatic heteromonocyclic compounds
External Descriptors
Not Available

Targets

Kind
Protein
Organism
Human
Pharmacological action
Yes
Actions
Other/unknown
General Function
Phosphatidylinositol-4,5-bisphosphate binding
Specific Function
In the kidney, probably plays a major role in potassium homeostasis. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than...
Gene Name
KCNJ1
Uniprot ID
P48048
Uniprot Name
ATP-sensitive inward rectifier potassium channel 1
Molecular Weight
44794.6 Da
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [PubMed:17139284]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [PubMed:17016423]
  3. Guirgis FK, Ghanem MH, Abdel-Hay MM: Comparative study of the hypoglycaemic and antilipolytic effects of four antidiabetic agents administered i.v. Arzneimittelforschung. 1976;26(3):435-7. [PubMed:134717]
  4. Greeley SA, Tucker SE, Naylor RN, Bell GI, Philipson LH: Neonatal diabetes mellitus: a model for personalized medicine. Trends Endocrinol Metab. 2010 Aug;21(8):464-72. doi: 10.1016/j.tem.2010.03.004. Epub 2010 Apr 29. [PubMed:20434356]
  5. Pondugula SR, Raveendran NN, Ergonul Z, Deng Y, Chen J, Sanneman JD, Palmer LG, Marcus DC: Glucocorticoid regulation of genes in the amiloride-sensitive sodium transport pathway by semicircular canal duct epithelium of neonatal rat. Physiol Genomics. 2006 Jan 12;24(2):114-23. Epub 2005 Nov 1. [PubMed:16263802]
  6. Lu M, Leng Q, Egan ME, Caplan MJ, Boulpaep EL, Giebisch GH, Hebert SC: CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney. J Clin Invest. 2006 Mar;116(3):797-807. Epub 2006 Feb 9. [PubMed:16470247]
  7. Serrano-Martin X, Payares G, Mendoza-Leon A: Glibenclamide, a blocker of K+(ATP) channels, shows antileishmanial activity in experimental murine cutaneous leishmaniasis. Antimicrob Agents Chemother. 2006 Dec;50(12):4214-6. Epub 2006 Oct 2. [PubMed:17015627]
Kind
Protein
Organism
Human
Pharmacological action
Unknown
Actions
Inducer
General Function
Sulfonylurea receptor activity
Specific Function
Subunit of the beta-cell ATP-sensitive potassium channel (KATP). Regulator of ATP-sensitive K(+) channels and insulin release.
Gene Name
ABCC8
Uniprot ID
Q09428
Uniprot Name
ATP-binding cassette sub-family C member 8
Molecular Weight
176990.36 Da
References
  1. Dabrowski M, Ashcroft FM, Ashfield R, Lebrun P, Pirotte B, Egebjerg J, Bondo Hansen J, Wahl P: The novel diazoxide analog 3-isopropylamino-7-methoxy-4H-1,2,4-benzothiadiazine 1,1-dioxide is a selective Kir6.2/SUR1 channel opener. Diabetes. 2002 Jun;51(6):1896-906. [PubMed:12031979]
  2. Hambrock A, Preisig-Muller R, Russ U, Piehl A, Hanley PJ, Ray J, Daut J, Quast U, Derst C: Four novel splice variants of sulfonylurea receptor 1. Am J Physiol Cell Physiol. 2002 Aug;283(2):C587-98. [PubMed:12107069]
  3. Hambrock A, Loffler-Walz C, Quast U: Glibenclamide binding to sulphonylurea receptor subtypes: dependence on adenine nucleotides. Br J Pharmacol. 2002 Aug;136(7):995-1004. [PubMed:12145099]
  4. Nielsen FE, Bodvarsdottir TB, Worsaae A, MacKay P, Stidsen CE, Boonen HC, Pridal L, Arkhammar PO, Wahl P, Ynddal L, Junager F, Dragsted N, Tagmose TM, Mogensen JP, Koch A, Treppendahl SP, Hansen JB: 6-Chloro-3-alkylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide derivatives potently and selectively activate ATP sensitive potassium channels of pancreatic beta-cells. J Med Chem. 2002 Sep 12;45(19):4171-87. [PubMed:12213059]
  5. Babenko AP, Bryan J: SUR-dependent modulation of KATP channels by an N-terminal KIR6.2 peptide. Defining intersubunit gating interactions. J Biol Chem. 2002 Nov 15;277(46):43997-4004. Epub 2002 Sep 3. [PubMed:12213829]
  6. Ueda K, Komine J, Matsuo M, Seino S, Amachi T: Cooperative binding of ATP and MgADP in the sulfonylurea receptor is modulated by glibenclamide. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1268-72. [PubMed:9990013]

Drug created on July 06, 2007 14:33 / Updated on November 09, 2017 02:59