Lithium succinate

Identification

Logo pink
Are you a
new drug developer?
Contact us to learn more about our customized products and solutions.
Logo pink
Stay in the know!
As part of our commitment to providing the most up-to-date drug information, we will be releasing #DrugBankUpdates with our newly added curated drug pages.
#DrugBankUpdates
Name
Lithium succinate
Accession Number
DB14508  (DBSALT002479)
Type
Small Molecule
Groups
Experimental
Description
Not Available
Structure
Thumb
Synonyms
  • Butanedioic acid, dilithium salt
  • Dilithium succinate
  • Lithium succinate dibasic
  • Lithium succinate, dibasic
  • Succinic acid dilithium salt
  • Succinic acid, dilithium salt
Categories
UNII
MD64P82Y28
CAS number
29126-50-9
Weight
Average: 129.95
Monoisotopic: 130.04296549
Chemical Formula
C4H4Li2O4
InChI Key
WAHQBNXSPALNEA-UHFFFAOYSA-L
InChI
InChI=1S/C4H6O4.2Li/c5-3(6)1-2-4(7)8;;/h1-2H2,(H,5,6)(H,7,8);;/q;2*+1/p-2
IUPAC Name
dilithium(1+) butanedioate
SMILES
[Li+].[Li+].[O-]C(=O)CCC([O-])=O

Pharmacology

Indication
Not Available
Pharmacodynamics
Not Available
Mechanism of action
TargetActionsOrganism
UInositol monophosphatase 2Not AvailableHumans
UInositol monophosphatase 1Not AvailableHumans
UGlycogen synthase kinase-3 betaNot AvailableHumans
UGlutamate receptor 3Not AvailableHumans
Absorption
Not Available
Volume of distribution
Not Available
Protein binding
Not Available
Metabolism
Not Available
Route of elimination
Not Available
Half life
Not Available
Clearance
Not Available
Toxicity
Not Available
Affected organisms
Not Available
Pathways
Not Available
Pharmacogenomic Effects/ADRs
Not Available

Interactions

Drug Interactions
This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.
DrugInteraction
AbacavirAbacavir may decrease the excretion rate of Lithium succinate which could result in a higher serum level.
AcarboseAcarbose may decrease the excretion rate of Lithium succinate which could result in a higher serum level.
AceclofenacAceclofenac may decrease the excretion rate of Lithium succinate which could result in a higher serum level.
AcemetacinAcemetacin may decrease the excretion rate of Lithium succinate which could result in a higher serum level.
AcetaminophenAcetaminophen may decrease the excretion rate of Lithium succinate which could result in a higher serum level.
AcetazolamideAcetazolamide may increase the excretion rate of Lithium succinate which could result in a lower serum level and potentially a reduction in efficacy.
Acetylsalicylic acidAcetylsalicylic acid may decrease the excretion rate of Lithium succinate which could result in a higher serum level.
AclidiniumAclidinium may decrease the excretion rate of Lithium succinate which could result in a higher serum level.
AcrivastineAcrivastine may decrease the excretion rate of Lithium succinate which could result in a higher serum level.
AcyclovirAcyclovir may decrease the excretion rate of Lithium succinate which could result in a higher serum level.
Additional Data Available
  • Extended Description
    Extended Description

    Extended description of the mechanism of action and particular properties of each drug interaction.

    Learn more
  • Severity
    Severity

    A severity rating for each drug interaction, from minor to major.

    Learn more
  • Evidence Level
    Evidence Level

    A rating for the strength of the evidence supporting each drug interaction.

    Learn more
  • Action
    Action

    An effect category for each drug interaction. Know how this interaction affects the subject drug.

    Learn more
Food Interactions
Not Available

References

General References
Not Available
External Links
ChemSpider
8373202
ChEMBL
CHEMBL3707288
Wikipedia
Lithium_succinate
ATC Codes
D11AX04 — Lithium succinate

Clinical Trials

Clinical Trials
Not Available

Pharmacoeconomics

Manufacturers
Not Available
Packagers
Not Available
Dosage forms
Not Available
Prices
Not Available
Patents
Not Available

Properties

State
Not Available
Experimental Properties
Not Available
Predicted Properties
PropertyValueSource
Water Solubility448.0 mg/mLALOGPS
logP-0.09ALOGPS
logP-0.4ChemAxon
logS0.54ALOGPS
pKa (Strongest Acidic)3.55ChemAxon
Physiological Charge-2ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area80.26 Å2ChemAxon
Rotatable Bond Count3ChemAxon
Refractivity45.21 m3·mol-1ChemAxon
Polarizability9.33 Å3ChemAxon
Number of Rings0ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Predicted ADMET features
Not Available

Spectra

Mass Spec (NIST)
Not Available
Spectra
Not Available

Taxonomy

Description
This compound belongs to the class of organic compounds known as dicarboxylic acids and derivatives. These are organic compounds containing exactly two carboxylic acid groups.
Kingdom
Organic compounds
Super Class
Organic acids and derivatives
Class
Carboxylic acids and derivatives
Sub Class
Dicarboxylic acids and derivatives
Direct Parent
Dicarboxylic acids and derivatives
Alternative Parents
Fatty acids and conjugates / Carboxylic acid salts / Organic lithium salts / Carboxylic acids / Organic oxides / Hydrocarbon derivatives / Carbonyl compounds / Organic cations
Substituents
Fatty acid / Dicarboxylic acid or derivatives / Carboxylic acid salt / Organic lithium salt / Organic alkali metal salt / Carboxylic acid / Organic oxygen compound / Organic oxide / Hydrocarbon derivative / Organic salt
Molecular Framework
Aliphatic acyclic compounds
External Descriptors
Not Available

Targets

Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Protein homodimerization activity
Specific Function
Can use myo-inositol monophosphates, scylloinositol 1,4-diphosphate, glucose-1-phosphate, beta-glycerophosphate, and 2'-AMP as substrates. Has been implicated as the pharmacological target for lith...
Gene Name
IMPA2
Uniprot ID
O14732
Uniprot Name
Inositol monophosphatase 2
Molecular Weight
31320.525 Da
References
  1. Cryns K, Shamir A, Shapiro J, Daneels G, Goris I, Van Craenendonck H, Straetemans R, Belmaker RH, Agam G, Moechars D, Steckler T: Lack of lithium-like behavioral and molecular effects in IMPA2 knockout mice. Neuropsychopharmacology. 2007 Apr;32(4):881-91. Epub 2006 Jul 12. [PubMed:16841073]
  2. Ohnishi T, Ohba H, Seo KC, Im J, Sato Y, Iwayama Y, Furuichi T, Chung SK, Yoshikawa T: Spatial expression patterns and biochemical properties distinguish a second myo-inositol monophosphatase IMPA2 from IMPA1. J Biol Chem. 2007 Jan 5;282(1):637-46. Epub 2006 Oct 26. [PubMed:17068342]
  3. Ohnishi T, Yamada K, Ohba H, Iwayama Y, Toyota T, Hattori E, Inada T, Kunugi H, Tatsumi M, Ozaki N, Iwata N, Sakamoto K, Iijima Y, Iwata Y, Tsuchiya KJ, Sugihara G, Nanko S, Osumi N, Detera-Wadleigh SD, Kato T, Yoshikawa T: A promoter haplotype of the inositol monophosphatase 2 gene (IMPA2) at 18p11.2 confers a possible risk for bipolar disorder by enhancing transcription. Neuropsychopharmacology. 2007 Aug;32(8):1727-37. Epub 2007 Jan 24. [PubMed:17251911]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Protein homodimerization activity
Specific Function
Responsible for the provision of inositol required for synthesis of phosphatidylinositol and polyphosphoinositides and has been implicated as the pharmacological target for lithium action in brain....
Gene Name
IMPA1
Uniprot ID
P29218
Uniprot Name
Inositol monophosphatase 1
Molecular Weight
30188.59 Da
References
  1. Sarkar S, Rubinsztein DC: Inositol and IP3 levels regulate autophagy: biology and therapeutic speculations. Autophagy. 2006 Apr-Jun;2(2):132-4. Epub 2006 Apr 6. [PubMed:16874097]
  2. Trinquet E, Fink M, Bazin H, Grillet F, Maurin F, Bourrier E, Ansanay H, Leroy C, Michaud A, Durroux T, Maurel D, Malhaire F, Goudet C, Pin JP, Naval M, Hernout O, Chretien F, Chapleur Y, Mathis G: D-myo-inositol 1-phosphate as a surrogate of D-myo-inositol 1,4,5-tris phosphate to monitor G protein-coupled receptor activation. Anal Biochem. 2006 Nov 1;358(1):126-35. Epub 2006 Aug 30. [PubMed:16965760]
  3. Ohnishi T, Ohba H, Seo KC, Im J, Sato Y, Iwayama Y, Furuichi T, Chung SK, Yoshikawa T: Spatial expression patterns and biochemical properties distinguish a second myo-inositol monophosphatase IMPA2 from IMPA1. J Biol Chem. 2007 Jan 5;282(1):637-46. Epub 2006 Oct 26. [PubMed:17068342]
  4. Tanizawa Y, Kuhara A, Inada H, Kodama E, Mizuno T, Mori I: Inositol monophosphatase regulates localization of synaptic components and behavior in the mature nervous system of C. elegans. Genes Dev. 2006 Dec 1;20(23):3296-310. [PubMed:17158747]
  5. Ohnishi T, Yamada K, Ohba H, Iwayama Y, Toyota T, Hattori E, Inada T, Kunugi H, Tatsumi M, Ozaki N, Iwata N, Sakamoto K, Iijima Y, Iwata Y, Tsuchiya KJ, Sugihara G, Nanko S, Osumi N, Detera-Wadleigh SD, Kato T, Yoshikawa T: A promoter haplotype of the inositol monophosphatase 2 gene (IMPA2) at 18p11.2 confers a possible risk for bipolar disorder by enhancing transcription. Neuropsychopharmacology. 2007 Aug;32(8):1727-37. Epub 2007 Jan 24. [PubMed:17251911]
  6. Li Z, Stieglitz KA, Shrout AL, Wei Y, Weis RM, Stec B, Roberts MF: Mobile loop mutations in an archaeal inositol monophosphatase: modulating three-metal ion assisted catalysis and lithium inhibition. Protein Sci. 2010 Feb;19(2):309-18. doi: 10.1002/pro.315. [PubMed:20027624]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Ubiquitin protein ligase binding
Specific Function
Constitutively active protein kinase that acts as a negative regulator in the hormonal control of glucose homeostasis, Wnt signaling and regulation of transcription factors and microtubules, by pho...
Gene Name
GSK3B
Uniprot ID
P49841
Uniprot Name
Glycogen synthase kinase-3 beta
Molecular Weight
46743.865 Da
References
  1. Borsotto M, Cavarec L, Bouillot M, Romey G, Macciardi F, Delaye A, Nasroune M, Bastucci M, Sambucy JL, Luan JJ, Charpagne A, Jouet V, Leger R, Lazdunski M, Cohen D, Chumakov I: PP2A-Bgamma subunit and KCNQ2 K+ channels in bipolar disorder. Pharmacogenomics J. 2007 Apr;7(2):123-32. Epub 2006 May 30. [PubMed:16733521]
  2. Adli M, Hollinde DL, Stamm T, Wiethoff K, Tsahuridu M, Kirchheiner J, Heinz A, Bauer M: Response to lithium augmentation in depression is associated with the glycogen synthase kinase 3-beta -50T/C single nucleotide polymorphism. Biol Psychiatry. 2007 Dec 1;62(11):1295-302. Epub 2007 Jul 12. [PubMed:17628506]
  3. O'Brien WT, Klein PS: Validating GSK3 as an in vivo target of lithium action. Biochem Soc Trans. 2009 Oct;37(Pt 5):1133-8. doi: 10.1042/BST0371133. [PubMed:19754466]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Extracellular-glutamate-gated ion channel activity
Specific Function
Receptor for glutamate that functions as ligand-gated ion channel in the central nervous system and plays an important role in excitatory synaptic transmission. L-glutamate acts as an excitatory ne...
Gene Name
GRIA3
Uniprot ID
P42263
Uniprot Name
Glutamate receptor 3
Molecular Weight
101155.975 Da
References
  1. Karkanias NB, Papke RL: Lithium modulates desensitization of the glutamate receptor subtype gluR3 in Xenopus oocytes. Neurosci Lett. 1999 Dec 31;277(3):153-6. [PubMed:10626836]

Drug created on July 11, 2018 16:04 / Updated on February 02, 2020 03:13