Polyubiquitin-B

Details

Name
Polyubiquitin-B
Synonyms
Not Available
Gene Name
UBB
Organism
Humans
Amino acid sequence
>lcl|BSEQ0017474|Polyubiquitin-B
MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYN
IQKESTLHLVLRLRGGMQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLI
FAGKQLEDGRTLSDYNIQKESTLHLVLRLRGGMQIFVKTLTGKTITLEVEPSDTIENVKA
KIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGGC
Number of residues
229
Molecular Weight
25761.46
Theoretical pI
Not Available
GO Classification
Processes
activation of MAPK activity / anaphase-promoting complex-dependent catabolic process / cellular iron ion homeostasis / cellular protein metabolic process / DNA damage response, detection of DNA damage / DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest / endoplasmic reticulum mannose trimming / endosomal transport / energy homeostasis / entry of bacterium into host cell / ERBB2 signaling pathway / error-free translesion synthesis / error-prone translesion synthesis / fat pad development / Fc-epsilon receptor signaling pathway / female gonad development / female meiosis I / fibroblast growth factor receptor signaling pathway / G2/M transition of mitotic cell cycle / global genome nucleotide-excision repair / glycogen biosynthetic process / hypothalamus gonadotrophin-releasing hormone neuron development / I-kappaB kinase/NF-kappaB signaling / innate immune response / interstrand cross-link repair / intracellular transport of virus / ion transmembrane transport / JNK cascade / macroautophagy / male meiosis I / MAPK cascade / membrane organization / mitochondrion transport along microtubule / MyD88-dependent toll-like receptor signaling pathway / MyD88-independent toll-like receptor signaling pathway / negative regulation of apoptotic process / negative regulation of canonical Wnt signaling pathway / negative regulation of epidermal growth factor receptor signaling pathway / negative regulation of G2/M transition of mitotic cell cycle / negative regulation of transcription from RNA polymerase II promoter / negative regulation of transforming growth factor beta receptor signaling pathway / negative regulation of type I interferon production / negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle / neuron projection morphogenesis / NIK/NF-kappaB signaling / Notch signaling pathway / nucleotide-binding oligomerization domain containing signaling pathway / nucleotide-excision repair, DNA damage recognition / nucleotide-excision repair, DNA duplex unwinding / nucleotide-excision repair, DNA gap filling / nucleotide-excision repair, DNA incision / nucleotide-excision repair, DNA incision, 5'-to lesion / nucleotide-excision repair, preincision complex assembly / positive regulation of apoptotic process / positive regulation of canonical Wnt signaling pathway / positive regulation of epidermal growth factor receptor signaling pathway / positive regulation of I-kappaB kinase/NF-kappaB signaling / positive regulation of intrinsic apoptotic signaling pathway by p53 class mediator / positive regulation of NF-kappaB transcription factor activity / positive regulation of protein monoubiquitination / positive regulation of protein ubiquitination / positive regulation of transcription from RNA polymerase II promoter / positive regulation of ubiquitin-protein ligase activity involved in regulation of mitotic cell cycle transition / proteasome-mediated ubiquitin-dependent protein catabolic process / protein deubiquitination / protein folding / protein polyubiquitination / protein ubiquitination / protein ubiquitination involved in ubiquitin-dependent protein catabolic process / regulation of mitochondrial membrane potential / regulation of mRNA stability / regulation of necroptotic process / regulation of neuron death / regulation of proteasomal protein catabolic process / regulation of signal transduction by p53 class mediator / regulation of transcription from RNA polymerase II promoter in response to hypoxia / regulation of tumor necrosis factor-mediated signaling pathway / regulation of type I interferon production / SCF-dependent proteasomal ubiquitin-dependent protein catabolic process / seminiferous tubule development / stimulatory C-type lectin receptor signaling pathway / stress-activated MAPK cascade / T cell receptor signaling pathway / transcription-coupled nucleotide-excision repair / transforming growth factor beta receptor signaling pathway / translesion synthesis / transmembrane transport / TRIF-dependent toll-like receptor signaling pathway / tumor necrosis factor-mediated signaling pathway / ubiquitin homeostasis / viral life cycle / virion assembly / Wnt signaling pathway / Wnt signaling pathway, planar cell polarity pathway
Components
cytosol / endocytic vesicle membrane / endoplasmic reticulum membrane / endoplasmic reticulum quality control compartment / endosome membrane / extracellular exosome / extracellular space / mitochondrial outer membrane / mitochondrion / myelin sheath / neuron projection / neuronal cell body / nucleoplasm / nucleus / plasma membrane / vesicle
General Function
Ubiquitin: Exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in lysosomal degradation; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling.
Specific Function
Not Available
Pfam Domain Function
Transmembrane Regions
Not Available
Cellular Location
Cytoplasm
Gene sequence
>lcl|BSEQ0017475|Polyubiquitin-B (UBB)
ATGCAGATCTTCGTGAAAACCCTTACCGGCAAGACCATCACCCTTGAGGTGGAGCCCAGT
GACACCATCGAAAATGTGAAGGCCAAGATCCAGGATAAGGAAGGCATTCCCCCCGACCAG
CAGAGGCTCATCTTTGCAGGCAAGCAGCTGGAAGATGGCCGTACTCTTTCTGACTACAAC
ATCCAGAAGGAGTCGACCCTGCACCTGGTCCTGCGTCTGAGAGGTGGTATGCAGATCTTC
GTGAAGACCCTGACCGGCAAGACCATCACCCTGGAAGTGGAGCCCAGTGACACCATCGAA
AATGTGAAGGCCAAGATCCAGGATAAAGAAGGCATCCCTCCCGACCAGCAGAGGCTCATC
TTTGCAGGCAAGCAGCTGGAAGATGGCCGCACTCTTTCTGACTACAACATCCAGAAGGAG
TCGACCCTGCACCTGGTCCTGCGTCTGAGAGGTGGTATGCAGATCTTCGTGAAGACCCTG
ACCGGCAAGACCATCACTCTGGAGGTGGAGCCCAGTGACACCATCGAAAATGTGAAGGCC
AAGATCCAAGATAAAGAAGGCATCCCCCCCGACCAGCAGAGGCTCATCTTTGCAGGCAAG
CAGCTGGAAGATGGCCGCACTCTTTCTGACTACAACATCCAGAAAGAGTCGACCCTGCAC
CTGGTCCTGCGCCTGAGGGGTGGCTGTTAA
Chromosome Location
17
Locus
17p11.2
External Identifiers
ResourceLink
UniProtKB IDP0CG47
UniProtKB Entry NameUBB_HUMAN
HGNC IDHGNC:12463
General References
  1. Baker RT, Board PG: The human ubiquitin gene family: structure of a gene and pseudogenes from the Ub B subfamily. Nucleic Acids Res. 1987 Jan 26;15(2):443-63. [Article]
  2. Tachikui H, Saitou N, Nakajima T, Hayasaka I, Ishida T, Inoue I: Lineage-specific homogenization of the polyubiquitin gene among human and great apes. J Mol Evol. 2003 Dec;57(6):737-44. [Article]
  3. Zody MC, Garber M, Adams DJ, Sharpe T, Harrow J, Lupski JR, Nicholson C, Searle SM, Wilming L, Young SK, Abouelleil A, Allen NR, Bi W, Bloom T, Borowsky ML, Bugalter BE, Butler J, Chang JL, Chen CK, Cook A, Corum B, Cuomo CA, de Jong PJ, DeCaprio D, Dewar K, FitzGerald M, Gilbert J, Gibson R, Gnerre S, Goldstein S, Grafham DV, Grocock R, Hafez N, Hagopian DS, Hart E, Norman CH, Humphray S, Jaffe DB, Jones M, Kamal M, Khodiyar VK, LaButti K, Laird G, Lehoczky J, Liu X, Lokyitsang T, Loveland J, Lui A, Macdonald P, Major JE, Matthews L, Mauceli E, McCarroll SA, Mihalev AH, Mudge J, Nguyen C, Nicol R, O'Leary SB, Osoegawa K, Schwartz DC, Shaw-Smith C, Stankiewicz P, Steward C, Swarbreck D, Venkataraman V, Whittaker CA, Yang X, Zimmer AR, Bradley A, Hubbard T, Birren BW, Rogers J, Lander ES, Nusbaum C: DNA sequence of human chromosome 17 and analysis of rearrangement in the human lineage. Nature. 2006 Apr 20;440(7087):1045-9. [Article]
  4. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. [Article]
  5. Schlesinger DH, Goldstein G: Molecular conservation of 74 amino acid sequence of ubiquitin between cattle and man. Nature. 1975 May 29;255(5507):423-4. [Article]
  6. Cripps D, Thomas SN, Jeng Y, Yang F, Davies P, Yang AJ: Alzheimer disease-specific conformation of hyperphosphorylated paired helical filament-Tau is polyubiquitinated through Lys-48, Lys-11, and Lys-6 ubiquitin conjugation. J Biol Chem. 2006 Apr 21;281(16):10825-38. Epub 2006 Jan 27. [Article]
  7. Huang F, Kirkpatrick D, Jiang X, Gygi S, Sorkin A: Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell. 2006 Mar 17;21(6):737-48. [Article]
  8. Okumura F, Hatakeyama S, Matsumoto M, Kamura T, Nakayama KI: Functional regulation of FEZ1 by the U-box-type ubiquitin ligase E4B contributes to neuritogenesis. J Biol Chem. 2004 Dec 17;279(51):53533-43. Epub 2004 Oct 5. [Article]
  9. Motegi A, Liaw HJ, Lee KY, Roest HP, Maas A, Wu X, Moinova H, Markowitz SD, Ding H, Hoeijmakers JH, Myung K: Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks. Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12411-6. doi: 10.1073/pnas.0805685105. Epub 2008 Aug 21. [Article]
  10. Komander D: The emerging complexity of protein ubiquitination. Biochem Soc Trans. 2009 Oct;37(Pt 5):937-53. doi: 10.1042/BST0370937. [Article]
  11. Dennissen FJ, Kholod N, Hermes DJ, Kemmerling N, Steinbusch HW, Dantuma NP, van Leeuwen FW: Mutant ubiquitin (UBB+1) associated with neurodegenerative disorders is hydrolyzed by ubiquitin C-terminal hydrolase L3 (UCH-L3). FEBS Lett. 2011 Aug 19;585(16):2568-74. doi: 10.1016/j.febslet.2011.06.037. Epub 2011 Jul 6. [Article]
  12. van Leeuwen FW, de Kleijn DP, van den Hurk HH, Neubauer A, Sonnemans MA, Sluijs JA, Koycu S, Ramdjielal RD, Salehi A, Martens GJ, Grosveld FG, Peter J, Burbach H, Hol EM: Frameshift mutants of beta amyloid precursor protein and ubiquitin-B in Alzheimer's and Down patients. Science. 1998 Jan 9;279(5348):242-7. [Article]
  13. Fischer DF, De Vos RA, Van Dijk R, De Vrij FM, Proper EA, Sonnemans MA, Verhage MC, Sluijs JA, Hobo B, Zouambia M, Steur EN, Kamphorst W, Hol EM, Van Leeuwen FW: Disease-specific accumulation of mutant ubiquitin as a marker for proteasomal dysfunction in the brain. FASEB J. 2003 Nov;17(14):2014-24. [Article]
  14. Kazlauskaite A, Kondapalli C, Gourlay R, Campbell DG, Ritorto MS, Hofmann K, Alessi DR, Knebel A, Trost M, Muqit MM: Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem J. 2014 May 15;460(1):127-39. doi: 10.1042/BJ20140334. [Article]
  15. Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, Sarraf SA, Banerjee S, Youle RJ: PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol. 2014 Apr 28;205(2):143-53. doi: 10.1083/jcb.201402104. Epub 2014 Apr 21. [Article]
  16. Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T, Endo T, Fon EA, Trempe JF, Saeki Y, Tanaka K, Matsuda N: Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature. 2014 Jun 5;510(7503):162-6. doi: 10.1038/nature13392. Epub 2014 Jun 4. [Article]
  17. Wauer T, Swatek KN, Wagstaff JL, Gladkova C, Pruneda JN, Michel MA, Gersch M, Johnson CM, Freund SM, Komander D: Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis. EMBO J. 2015 Feb 3;34(3):307-25. doi: 10.15252/embj.201489847. Epub 2014 Dec 19. [Article]

Drug Relations

Drug Relations
DrugBank IDNameDrug groupPharmacological action?ActionsDetails
DB02542(4s)-5-Fluoro-L-LeucineexperimentalunknownDetails