Genome polyprotein

Details

Name
Genome polyprotein
Synonyms
  • 3.4.22.29
  • P2A
Gene Name
Not Available
Organism
Coxsackievirus A9 (strain Griggs)
Amino acid sequence
>lcl|BSEQ0017379|Genome polyprotein
MGAQVSTQKTGAHETSLSAAGNSIIHYTNINYYKDAASNSANRQDFTQDPSKFTEPVKDV
MIKSLPALNSPTVEECGYSDRVRSITLGNSTITTQECANVVVGYGRWPTYLRDDEATAED
QPTQPDVATCRFYTLDSIKWEKGSVGWWWKFPEALSDMGLFGQNMQYHYLGRAGYTIHLQ
CNASKFHQGCLLVVCVPEAEMGGAVVGQAFSATAMANGDKAYEFTSATQSDQTKVQTAIH
NAGMGVGVGNLTIYPHQWINLRTNNSATIVMPYINSVPMDNMFRHYNFTLMVIPFVKLDY
ADTASTYVPITVTVAPMCAEYNGLRLAQAQGLPTMNTPGSTQFLTSDDFQSPCALPQFDV
TPSMNIPGEVKNLMEIAEVDSVVPVNNVQDTTDQMEMFRIPVTINAPLQQQVFGLRLQPG
LDSVFKHTLLGEILNYYAHWSGSMKLTFVFCGSAMATGKFLIAYSPPGANPPKTRKDAML
GTHIIWDIGLQSSCVLCVPWISQTHYRLVQQDEYTSAGYVTCWYQTGMIVPPGTPNSSSI
MCFASACNDFSVRMLRDTPFISQDNKLQGDVEEAIERARCTVADTMRTGPSNSASVPALT
AVETGHTSQVTPSDTMQTRHVKNYHSRSESTVENFLGRSACVYMEEYKTTDKHVNKKFVA
WPINTKQMVQMRRKLEMFTYLRFDMEVTFVITSRQDPGTTLAQDMPVLTRQIMYVPPGGP
IPAKVDDYAWQTSTNPSIFWTEGNAPARMSIPFISIGNAYSNFYDGWSNFDQRGSYGYNT
LNNLGHIYVRHVSGSSPHPITSTIRVYFKPKHTRAWVPRPPRLCQYKKAFSVDFTPTPIT
DTRKDINTVTTVAQSRRRGDMSTLNTHGAFGQQSGAVYVGNYRVINRHLATHTDWQNCVW
EDYNRDLLVSTTTAHGCDVIARCQCTTGVYFCASKNKHYPVSFEGPGLVEVQESEYYPKR
YQSHVLLAAGFSEPGDCGGILRCEHGVIGIVTMGGEGVVGFADVRDLLWLEDDAMEQGVK
DYVEQLGNAFGSGFTNQICEQVNLLKESLVGQDSILEKSLKALVKIISALVIVVRNHDDL
ITVTAILALIGCTSSPWRWLKQKVSQYYGIPMAERQNDSWLKKFTEMTNACKRMEWIAIK
IQKFIEWLKVKILPEVREKHEFLNRLKQLPLLESQIATIEQSAPSQSDQEQLFSNVQYFA
HYCRKYAPLYAAEAKRVFSLEKKMSNYIQFKSKCRIEPVCLLLHGSPGAGKSVATNLIGR
SLAEKLNSSVYSLPPDPDHFDGYKQQAVVIMDDLCQNPDGKDVSLFCQMVSSVDFVPPMA
ALEEKGILFTSPFVLASTNAGSINAPTVSDSRALARRFHFDMNIEVISMYSQNGKINMPM
SVKTCDEECCPVNFKKCCPLVCGKAIQFIDRRTQVRYSLDMLVTEMFREYNHRHSVGATL
EALFQGPPIYREIKISVAPETPPPPVIADLLKSVDSEDVREYCKEKGWLIPEVNSTLQIE
KYVSRAFICLQAITTFVSVAGIIYIIYKLFAGFQGAYTGIPNQKPKVPTLRQAKVQGPAF
EFAVAMMKRNSSTVKTEYGEFTMLGIYDRWAVLPRHAKPGPTILMNDQEVGVMDAKELVD
KDGTNLELTLLKLNRNEKFRDIRGFLAKEEMEVNEAVLAINTSKFPNMYIPVGQVTDYGF
LNLGGTPTKRMLMYNFPTRAGQCGGVLMSTGKVLGIHVGGNGHQGFSAALLKHYFNDEQG
EIEFIESSKDAGFPIINTPSKTKLEPSVFHQVFEGVKEPAVLRNGDPRLKANFEEAIFSK
YIGNVNTHVDEYMLEAVDHYAGQLATLDISTEPMKLEDAVYGTEGLEALDLTTSAGYPYV
ALGIKKRDILSKKTRDLTKLKECMDKYGLNLPMITYVKDQLRSAEKVAKGKSRLIEASSL
NDSVAMRQTFGNLYKTFHLNPGIVTGSAVGCDPDLFWSKIPVMLNGHLIAFDYSGYDASL
SPVWFACLKLLLEKLGYSHKETNYIDYLCNSHHLYRDKHYFVRGGMPSGCSGTSIFNSMI
NNIIIRTLMLKVYKGIDLDQFRMIAYGDDVIASYPWPIDASLLAEAGKDYGLIMTPADKG
ECFNEVTWTNVTFLKRYFRADEQYPFLVHPVMPMKDIHESIRWTKDPKNTQDHVRSLCLL
AWHNGEHEYEEFIRKIRSVPVGRCLTLPAFSTLRRKWLDSF
Number of residues
2201
Molecular Weight
246533.13
Theoretical pI
7.09
GO Classification
Functions
ATP binding / cysteine-type endopeptidase activity / ion channel activity / metal ion binding / RNA binding / RNA helicase activity / RNA-directed RNA polymerase activity / structural molecule activity
Processes
DNA replication / endocytosis involved in viral entry into host cell / induction by virus of host autophagy / pore formation by virus in membrane of host cell / pore-mediated entry of viral genome into host cell / positive stranded viral RNA replication / protein oligomerization / RNA-protein covalent cross-linking / suppression by virus of host gene expression / suppression by virus of host mRNA export from nucleus / suppression by virus of host RIG-I activity by RIG-I proteolysis / suppression by virus of host translation initiation factor activity / transcription, DNA-templated / viral RNA genome replication / virion attachment to host cell
Components
host cell cytoplasmic vesicle membrane / integral to membrane of host cell / membrane / T=pseudo3 icosahedral viral capsid
General Function
Structural molecule activity
Specific Function
Capsid protein VP1: Forms an icosahedral capsid of pseudo T=3 symmetry with capsid proteins VP2 and VP3. The capsid is 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome. Capsid protein VP1 mainly forms the vertices of the capsid. Capsid protein VP1 interacts with host integrin ITGAV/ITGB6 to provide virion attachment to target host cells. This attachment induces virion internalization. Tyrosine kinases are probably involved in the entry process. After binding to its receptor, the capsid undergoes conformational changes. Capsid protein VP1 N-terminus (that contains an amphipathic alpha-helix) and capsid protein VP4 are externalized. Together, they shape a pore in the host membrane through which viral genome is translocated to host cell cytoplasm. After genome has been released, the channel shrinks (By similarity).Capsid protein VP2: Forms an icosahedral capsid of pseudo T=3 symmetry with capsid proteins VP2 and VP3. The capsid is 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome (By similarity).Capsid protein VP3: Forms an icosahedral capsid of pseudo T=3 symmetry with capsid proteins VP2 and VP3. The capsid is 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome (By similarity).Capsid protein VP4: Lies on the inner surface of the capsid shell. After binding to the host receptor, the capsid undergoes conformational changes. Capsid protein VP4 is released, Capsid protein VP1 N-terminus is externalized, and together, they shape a pore in the host membrane through which the viral genome is translocated into the host cell cytoplasm. After genome has been released, the channel shrinks (By similarity).Capsid protein VP0: Component of immature procapsids, which is cleaved into capsid proteins VP4 and VP2 after maturation. Allows the capsid to remain inactive before the maturation step (By similarity).Protein 2A: Cysteine protease that cleaves viral polyprotein and specific host proteins. It is responsible for the cleavage between the P1 and P2 regions, first cleavage occurring in the polyprotein. Cleaves also the host translation initiation factor EIF4G1, in order to shut down the capped cellular mRNA translation. Inhibits the host nucleus-cytoplasm protein and RNA trafficking by cleaving host members of the nuclear pores (By similarity).Protein 2B: Plays an essential role in the virus replication cycle by acting as a viroporin. Creates a pore in the host reticulum endoplasmic and as a consequence releases Ca2+ in the cytoplasm of infected cell. In turn, high levels of cyctoplasmic calcium may trigger membrane trafficking and transport of viral ER-associated proteins to viroplasms, sites of viral genome replication (By similarity).Protein 2C: Induces and associates with structural rearrangements of intracellular membranes. Displays RNA-binding, nucleotide binding and NTPase activities. May play a role in virion morphogenesis and viral RNA encapsidation by interacting with the capsid protein VP3 (By similarity).Protein 3AB: Localizes the viral replication complex to the surface of membranous vesicles. Together with protein 3CD binds the Cis-Active RNA Element (CRE) which is involved in RNA synthesis initiation. Acts as a cofactor to stimulate the activity of 3D polymerase, maybe through a nucleid acid chaperone activity (By similarity).Protein 3A: Localizes the viral replication complex to the surface of membranous vesicles. It inhibits host cell endoplasmic reticulum-to-Golgi apparatus transport and causes the dissassembly of the Golgi complex, possibly through GBF1 interaction. This would result in depletion of MHC, trail receptors and IFN receptors at the host cell surface (By similarity).Viral protein genome-linked: acts as a primer for viral RNA replication and remains covalently bound to viral genomic RNA. VPg is uridylylated prior to priming replication into VPg-pUpU. The oriI viral genomic sequence may act as a template for this. The VPg-pUpU is then used as primer on the genomic RNA poly(A) by the RNA-dependent RNA polymerase to replicate the viral genome. VPg may be removed in the cytoplasm by an unknown enzyme termed "unlinkase". VPg is not cleaved off virion genomes because replicated genomic RNA are encapsidated at the site of replication (By similarity).Protein 3CD: Is involved in the viral replication complex and viral polypeptide maturation. It exhibits protease activity with a specificity and catalytic efficiency that is different from protease 3C. Protein 3CD lacks polymerase activity. The 3C domain in the context of protein 3CD may have an RNA binding activity (By similarity).Protease 3C: cleaves host DDX58/RIG-I and thus contributes to the inhibition of type I interferon production. Cleaves also host PABPC1 (By similarity).RNA-directed RNA polymerase: Replicates the viral genomic RNA on the surface of intracellular membranes. May form linear arrays of subunits that propagate along a strong head-to-tail interaction called interface-I. Covalently attaches UMP to a tyrosine of VPg, which is used to prime RNA synthesis. The positive stranded RNA genome is first replicated at virus induced membranous vesicles, creating a dsRNA genomic replication form. This dsRNA is then used as template to synthesize positive stranded RNA genomes. ss(+)RNA genomes are either translated, replicated or encapsidated (By similarity).
Pfam Domain Function
Transmembrane Regions
Not Available
Cellular Location
Virion
Gene sequence
>lcl|BSEQ0008041|6606 bp
ATGGGAGCTCAAGTGTCAACACAGAAAACTGGAGCTCATGAAACCAGTTTAAGTGCGGCA
GGTAATTCAATTATACATTATACGAACATCAACTACTATAAAGATGCTGCGTCTAATTCG
GCTAATCGGCAAGACTTTACACAAGACCCGAGTAAGTTTACAGAGCCTGTTAAAGATGTT
ATGATTAAGTCTTTACCTGCCCTCAACTCACCAACAGTAGAAGAGTGCGGGTACAGCGAT
CGGGTTAGGTCCATCACCCTTGGAAACTCCACGATAACCACGCAGGAGTGTGCTAACGTG
GTGGTGGGGTATGGTAGATGGCCCACTTACCTCAGGGACGACGAGGCGACTGCCGAGGAT
CAACCCACACAGCCTGACGTAGCAACATGCCGCTTTTATACTTTAGATTCAATCAAGTGG
GAAAAGGGATCGGTGGGGTGGTGGTGGAAGTTCCCAGAAGCGCTTAGTGATATGGGATTA
TTCGGTCAGAACATGCAATACCACTACCTGGGTCGTGCAGGGTACACTATTCACCTACAA
TGTAACGCTTCCAAGTTCCATCAAGGGTGTTTGCTAGTAGTGTGTGTGCCCGAGGCTGAG
ATGGGAGGAGCTGTGGTTGGACAAGCATTTTCCGCCACCGCGATGGCAAATGGTGATAAA
GCATATGAGTTCACTAGCGCAACCCAAAGTGATCAGACAAAAGTTCAAACTGCTATACAC
AATGCAGGGATGGGCGTAGGTGTAGGGAACCTCACTATCTACCCGCACCAGTGGATAAAT
TTGCGCACCAACAACAGTGCCACCATAGTGATGCCATATATTAATAGTGTGCCCATGGAC
AACATGTTCAGACATTATAATTTTACCCTGATGGTGATACCTTTTGTGAAACTGGACTAT
GCCGACACCGCATCCACGTACGTGCCAATTACAGTGACGGTGGCCCCAATGTGTGCGGAG
TATAACGGCTTACGTCTGGCACAAGCGCAAGGTTTGCCAACTATGAACACACCAGGAAGC
ACGCAATTCCTAACATCAGATGACTTTCAATCGCCGTGCGCTTTGCCACAATTTGATGTG
ACGCCTAGTATGAACATCCCAGGAGAAGTGAAGAACCTAATGGAAATAGCAGAAGTGGAC
TCGGTCGTGCCCGTGAACAATGTCCAAGACACCACTGACCAAATGGAGATGTTCAGGATA
CCAGTGACCATAAATGCCCCTCTACAACAACAGGTTTTTGGCCTCAGATTGCAACCAGGC
TTAGATAGTGTGTTTAAGCACACTCTGTTGGGAGAAATTCTAAACTACTATGCGCACTGG
TCAGGCAGCATGAAGCTGACATTTGTGTTTTGCGGGTCTGCAATGGCAACAGGGAAATTT
TTAATAGCATATTCACCACCTGGGGCCAACCCCCCGAAAACACGAAAGGATGCAATGCTG
GGAACACATATCATATGGGACATTGGTTTACAATCTAGCTGTGTGTTGTGTGTGCCATGG
ATCAGTCAAACACATTATAGGCTTGTACAGCAGGATGAGTACACCAGCGCTGGTTACGTG
ACGTGTTGGTATCAGACTGGTATGATTGTCCCACCAGGAACCCCAAATTCTAGCTCTATT
ATGTGCTTTGCATCAGCGTGCAACGACTTCTCAGTAAGAATGTTGAGGGACACACCATTC
ATATCCCAGGATAATAAGCTGCAAGGGGATGTGGAAGAAGCCATTGAGAGGGCACGTTGT
ACAGTTGCTGACACCATGCGTACGGGGCCTAGCAATTCCGCGAGCGTACCTGCACTCACT
GCAGTTGAGACAGGGCACACCTCGCAAGTTACTCCAAGTGACACTATGCAGACAAGACAT
GTGAAAAACTATCATTCGCGCTCTGAGTCGACTGTGGAGAATTTCCTCGGTCGGTCGGCA
TGCGTGTACATGGAAGAGTACAAGACCACTGATAAGCATGTTAACAAGAAATTCGTCGCC
TGGCCAATCAACACAAAACAAATGGTTCAGATGCGGAGGAAGCTGGAAATGTTCACTTAT
CTTAGGTTTGATATGGAGGTAACTTTTGTGATCACAAGTCGACAAGACCCCGGAACAACC
CTAGCTCAGGACATGCCCGTGTTGACGCGCCAAATCATGTATGTGCCACCTGGCGGTCCG
ATTCCAGCAAAAGTTGATGATTATGCCTGGCAGACGTCTACAAACCCCAGCATTTTCTGG
ACGGAAGGAAACGCACCAGCGCGCATGTCCATCCCATTTATCAGCATAGGAAATGCATAC
AGCAATTTTTATGACGGGTGGTCAAATTTTGATCAGAGGGGCTCATACGGGTACAATACC
CTGAATAACTTAGGTCACATATATGTGAGACACGTGAGTGGAAGTAGTCCTCACCCAATC
ACGAGCACTATTAGAGTGTATTTCAAGCCAAAACATACCAGAGCTTGGGTGCCGCGCCCT
CCAAGGCTATGCCAATACAAGAAGGCATTTAGCGTGGATTTCACGCCAACTCCCATTACA
GACACCAGGAAAGACATCAACACTGTAACCACCGTGGCGCAAAGTCGGCGTCGGGGTGAC
ATGTCCACCCTTAACACGCATGGTGCCTTCGGACAACAATCCGGGGCCGTCTATGTGGGC
AACTACAGAGTGATCAACAGACACCTGGCAACACACACGGATTGGCAAAATTGCGTGTGG
GAGGATTACAATAGAGACCTCCTTGTGAGCACGACTACAGCGCACGGGTGTGATGTCATA
GCTAGATGCCAGTGTACAACCGGGGTGTACTTTTGTGCATCCAAGAACAAGCACTACCCT
GTTTCATTCGAAGGGCCAGGTTTAGTGGAAGTCCAAGAGAGTGAATACTACCCTAAAAGA
TATCAATCCCATGTACTTCTGGCAGCAGGATTTTCCGAACCAGGGGACTGTGGTGGCATC
TTAAGGTGTGAACACGGTGTCATAGGCATCGTAACCATGGGAGGCGAAGGTGTTGTGGGT
TTTGCTGACGTGCGCGACCTCTTATGGTTAGAGGATGACGCTATGGAGCAGGGTGTGAAG
GACTACGTGGAGCAACTTGGAAATGCATTTGGTTCAGGCTTCACCAATCAGATCTGTGAG
CAAGTTAACCTTTTAAAAGAATCACTAGTGGGTCAAGACTCCATCTTAGAGAAATCTCTA
AAAGCCCTAGTCAAGATAATATCAGCCTTAGTGATCGTGGTGAGGAACCACGATGACCTA
ATTACAGTGACTGCCATACTAGCCCTCATCGGTTGCACCTCGTCTCCATGGCGGTGGCTT
AAACAGAAAGTGTCACAGTATTATGGGATACCCATGGCTGAACGCCAAAATGATAGCTGG
CTCAAGAAATTCACTGAAATGACAAATGCCTGCAAACGAATGGAGTGGATAGCCATCAAA
ATTCAGAAGTTTATAGAGTGGCTCAAAGTTAAAATTCTACCAGAGGTAAGGGAGAAGCAT
GAGTTCCTGAACAGACTTAAACAGCTTCCCCTATTAGAGAGTCAGATTGCCACCATCGAG
CAGAGTGCACCATCCCAAAGCGACCAAGAGCAATTGTTTTCCAATGTCCAGTACTTTGCA
CACTATTGCAGAAAGTATGCCCCCCTCTACGCAGCAGAGGCAAAGAGGGTGTTCTCCCTT
GAGAAAAAGATGAGCAATTACATACAGTTCAAGTCCAAATGCCGTATTGAGCCTGTATGT
TTGCTCCTACATGGGAGTCCAGGTGCCGGCAAGTCGGTGGCAACAAACCTAATTGGAAGG
TCACTCGCTGAGAAATTAAACAGTTCAGTGTACTCATTACCACCAGACCCAGATCACTTT
GATGGCTACAAACAACAGGCCGTAGTGATTATGGATGACCTATGCCAGAACCCTGATGGA
AAAGATGTCTCCTTGTTTTGCCAAATGGTCTCTAGTGTAGATTTTGTGCCGCCCATGGCT
GCCTTGGAAGAGAAGGGCATTTTGTTCACCTCTCCGTTCGTTCTGGCATCGACTAATGCA
GGATCCATAAATGCTCCAACTGTGTCAGACAGCAGGGCCTTAGCAAGGAGGTTTCACTTC
GATATGAACATTGAAGTTATCTCCATGTATAGTCAGAACGGCAAAATAAATATGCCGATG
TCAGTGAAGACGTGTGATGAAGAGTGCTGTCCAGTCAACTTTAAGAAGTGTTGCCCTCTA
GTATGTGGTAAAGCCATCCAGTTCATAGACAGAAGAACCCAAGTTAGATACTCCCTTGAC
ATGCTGGTAACTGAGATGTTTAGAGAGTATAACCATAGGCATAGTGTCGGGGCCACCCTT
GAGGCATTATTCCAGGGTCCACCGATATATAGAGAAATTAAGATCAGTGTTGCGCCAGAG
ACACCACCACCACCTGTCATCGCTGATCTACTCAAGTCGGTGGACAGTGAGGATGTGAGA
GAGTACTGCAAAGAAAAGGGATGGTTGATCCCTGAGGTAAACTCCACCCTCCAAATTGAA
AAATACGTCAGTCGGGCTTTCATTTGCTTGCAGGCAATAACCACATTCGTGTCAGTAGCT
GGGATCATCTACATAATATATAAGCTCTTTGCAGGCTTTCAGGGTGCATATACAGGAATA
CCCAATCAGAAACCTAAGGTACCTACCTTAAGACAAGCAAAAGTGCAGGGTCCCGCATTT
GAATTCGCCGTTGCAATGATGAAGAGAAACTCAAGCACGGTGAAGACTGAGTATGGCGAA
TTCACCATGCTGGGCATCTATGACAGGTGGGCCGTCTTACCACGCCACGCTAAGCCTGGA
CCAACCATCCTGATGAATGACCAGGAAGTGGGCGTGATGGATGCTAAGGAATTAGTGGAT
AAGGATGGCACAAACCTAGAACTGACATTGCTTAAATTAAACAGGAATGAGAAGTTCAGA
GACATCAGAGGCTTCTTAGCTAAGGAGGAGATGGAGGTCAACGAAGCCGTGCTAGCAATT
AATACCAGTAAATTTCCCAACATGTACATTCCAGTGGGACAAGTCACGGACTACGGCTTC
CTAAACCTGGGTGGTACACCCACTAAGAGAATGCTCATGTACAACTTCCCCACAAGAGCA
GGTCAGTGCGGCGGAGTGCTCATGTCCACTGGCAAAGTCTTGGGAATCCATGTTGGTGGA
AATGGTCATCAAGGTTTCTCAGCAGCACTTCTCAAGCACTACTTCAATGATGAACAAGGA
GAGATCGAGTTCATTGAGAGTTCAAAGGATGCAGGGTTCCCGATTATCAATACACCTAGT
AAGACCAAGCTGGAGCCAAGTGTCTTCCATCAAGTTTTTGAAGGTGTCAAAGAACCAGCG
GTCCTCAGGAATGGTGATCCACGCCTCAAAGCTAATTTTGAGGAAGCCATATTTTCCAAG
TACATCGGAAATGTTAACACGCACGTGGATGAATACATGCTGGAAGCTGTTGATCATTAT
GCCGGACAATTGGCCACCCTAGATATTAGCACTGAACCAATGAAGTTGGAGGATGCTGTA
TACGGTACTGAAGGTCTTGAGGCTCTTGACCTAACAACGAGTGCAGGTTACCCTTATGTT
GCTCTGGGCATCAAGAAGAGGGACATTCTCTCAAAGAAGACCAGGGACCTGACCAAGCTG
AAGGAGTGCATGGACAAGTATGGCCTAAACTTGCCAATGATAACCTATGTGAAAGATCAA
CTCAGATCTGCAGAGAAGGTGGCAAAGGGAAAGTCTAGGCTCATTGAGGCGTCCAGTTTG
AATGACTCCGTGGCAATGAGACAGACATTCGGCAACCTATACAAAACTTTTCACCTAAAC
CCAGGGATTGTGACTGGCAGTGCCGTCGGGTGTGACCCGGATCTCTTTTGGAGTAAAATA
CCAGTAATGTTAAACGGTCACCTCATAGCCTTTGATTACTCTGGATATGATGCTAGCTTG
AGTCCTGTATGGTTTGCTTGTCTAAAACTACTACTTGAGAAACTTGGTTACTCGCACAAG
GAGACCAATTACATTGATTACCTGTGCAACTCCCATCACCTGTACAGGGACAAGCATTAT
TTCGTGCGGGGTGGCATGCCATCAGGATGTTCTGGCACGAGCATCTTTAACTCAATGATA
AACAACATCATAATTAGGACACTCATGTTGAAGGTTTACAAAGGGATCGACTTGGATCAA
TTCAGGATGATTGCTTATGGTGACGATGTGATCGCATCATACCCGTGGCCCATAGATGCG
TCTTTGCTTGCTGAAGCTGGCAAGGACTATGGATTAATCATGACACCAGCAGACAAAGGG
GAGTGCTTCAATGAAGTTACTTGGACTAACGTCACATTCCTAAAGAGGTATTTTAGAGCA
GATGAACAATACCCCTTTTTAGTGCACCCTGTTATGCCTATGAAAGACATACACGAATCA
ATCAGATGGACCAAGGATCCAAAGAACACCCAAGACCACGTGCGCTCGCTATGCTTATTA
GCTTGGCACAACGGGGAGCACGAATATGAGGAGTTCATTCGCAAAATCAGGAGCGTCCCA
GTTGGACGTTGTTTGACCCTACCTGCGTTCTCAACCCTACGCAGGAAGTGGTTGGACTCT
TTCTAA
Chromosome Location
Not Available
Locus
Not Available
External Identifiers
ResourceLink
UniProtKB IDP21404
UniProtKB Entry NamePOLG_CXA9
GenBank Protein ID221215
GenBank Gene IDD00627
General References
  1. Chang KH, Auvinen P, Hyypia T, Stanway G: The nucleotide sequence of coxsackievirus A9; implications for receptor binding and enterovirus classification. J Gen Virol. 1989 Dec;70 ( Pt 12):3269-80. [Article]
  2. Williams CH, Kajander T, Hyypia T, Jackson T, Sheppard D, Stanway G: Integrin alpha v beta 6 is an RGD-dependent receptor for coxsackievirus A9. J Virol. 2004 Jul;78(13):6967-73. [Article]
  3. Hendry E, Hatanaka H, Fry E, Smyth M, Tate J, Stanway G, Santti J, Maaronen M, Hyypia T, Stuart D: The crystal structure of coxsackievirus A9: new insights into the uncoating mechanisms of enteroviruses. Structure. 1999 Dec 15;7(12):1527-38. [Article]

Drug Relations

Drug Relations
DrugBank IDNameDrug groupPharmacological action?ActionsDetails
DB08231Myristic acidexperimentalunknownDetails
DB087265-(7-(4-(4,5-dihydro-2-oxazolyl)phenoxy)heptyl)-3-methyl isoxazoleexperimentalunknownDetails