Nuclear receptor ROR-alpha

Details

Name
Nuclear receptor ROR-alpha
Synonyms
  • NR1F1
  • Nuclear receptor RZR-alpha
  • Nuclear receptor subfamily 1 group F member 1
  • RAR-related orphan receptor A
  • Retinoid-related orphan receptor-alpha
  • RZRA
Gene Name
RORA
Organism
Humans
Amino acid sequence
>lcl|BSEQ0009466|Nuclear receptor ROR-alpha
MESAPAAPDPAASEPGSSGADAAAGSRETPLNQESARKSEPPAPVRRQSYSSTSRGISVT
KKTHTSQIEIIPCKICGDKSSGIHYGVITCEGCKGFFRRSQQSNATYSCPRQKNCLIDRT
SRNRCQHCRLQKCLAVGMSRDAVKFGRMSKKQRDSLYAEVQKHRMQQQQRDHQQQPGEAE
PLTPTYNISANGLTELHDDLSNYIDGHTPEGSKADSAVSSFYLDIQPSPDQSGLDINGIK
PEPICDYTPASGFFPYCSFTNGETSPTVSMAELEHLAQNISKSHLETCQYLREELQQITW
QTFLQEEIENYQNKQREVMWQLCAIKITEAIQYVVEFAKRIDGFMELCQNDQIVLLKAGS
LEVVFIRMCRAFDSQNNTVYFDGKYASPDVFKSLGCEDFISFVFEFGKSLCSMHLTEDEI
ALFSAFVLMSADRSWLQEKVKIEKLQQKIQLALQHVLQKNHREDGILTKLICKVSTLRAL
CGRHTEKLMAFKAIYPDIVRLHFPPLYKELFTSEFEPAMQIDG
Number of residues
523
Molecular Weight
58974.35
Theoretical pI
Not Available
GO Classification
Functions
core promoter sequence-specific DNA binding / DNA binding / oxysterol binding / RNA polymerase II regulatory region sequence-specific DNA binding / RNA polymerase II transcription factor activity, ligand-activated sequence-specific DNA binding / sequence-specific DNA binding / steroid hormone receptor activity / transcription coactivator binding / transcription corepressor binding / transcription factor activity, direct ligand regulated sequence-specific DNA binding / transcription factor activity, sequence-specific DNA binding / transcription factor binding / zinc ion binding
Processes
angiogenesis / cellular response to hypoxia / cellular response to interleukin-1 / cellular response to sterol / cellular response to tumor necrosis factor / cerebellar granule cell precursor proliferation / cerebellar Purkinje cell differentiation / cGMP metabolic process / circadian regulation of gene expression / circadian rhythm / gene expression / intracellular receptor signaling pathway / muscle cell differentiation / negative regulation of fat cell differentiation / negative regulation of I-kappaB kinase/NF-kappaB signaling / negative regulation of inflammatory response / nitric oxide biosynthetic process / positive regulation of circadian rhythm / positive regulation of transcription from RNA polymerase II promoter / positive regulation of transcription, DNA-templated / positive regulation of vascular endothelial growth factor production / regulation of cholesterol homeostasis / regulation of glucose metabolic process / regulation of macrophage activation / regulation of smoothened signaling pathway / regulation of steroid metabolic process / regulation of transcription involved in cell fate commitment / regulation of transcription, DNA-templated / T-helper 17 cell differentiation / transcription initiation from RNA polymerase II promoter / triglyceride homeostasis / xenobiotic metabolic process
Components
nucleoplasm / nucleus
General Function
Zinc ion binding
Specific Function
Nuclear receptor that binds DNA as a monomer to ROR response elements (RORE) containing a single core motif half-site 5'-AGGTCA-3' preceded by a short A-T-rich sequence. Key regulator of embryonic development, cellular differentiation, immunity, circadian rhythm as well as lipid, steroid, xenobiotics and glucose metabolism. Considered to have intrinsic transcriptional activity, have some natural ligands like oxysterols that act as agonists (25-hydroxycholesterol) or inverse agonists (7-oxygenated sterols), enhancing or repressing the transcriptional activity, respectively. Recruits distinct combinations of cofactors to target genes regulatory regions to modulate their transcriptional expression, depending on the tissue, time and promoter contexts. Regulates genes involved in photoreceptor development including OPN1SW, OPN1SM and ARR3 and skeletal muscle development with MYOD1. Required for proper cerebellum development, regulates SHH gene expression, among others, to induce granule cells proliferation as well as expression of genes involved in calcium-mediated signal transduction. Regulates the circadian expression of several clock genes, including CLOCK, ARNTL/BMAL1, NPAS2 and CRY1. Competes with NR1D1 for binding to their shared DNA response element on some clock genes such as ARNTL/BMAL1, CRY1 and NR1D1 itself, resulting in NR1D1-mediated repression or RORA-mediated activation of clock genes expression, leading to the circadian pattern of clock genes expression. Therefore influences the period length and stability of the clock. Regulates genes involved in lipid metabolism such as apolipoproteins APOA1, APOA5, APOC3 and PPARG. In liver, has specific and redundant functions with RORC as positive or negative modulator of expression of genes encoding phase I and phase II proteins involved in the metabolism of lipids, steroids and xenobiotics, such as CYP7B1 and SULT2A1. Induces a rhythmic expression of some of these genes. In addition, interplays functionally with NR1H2 and NR1H3 for the regulation of genes involved in cholesterol metabolism. Also involved in the regulation of hepatic glucose metabolism through the modulation of G6PC and PCK1. In adipose tissue, plays a role as negative regulator of adipocyte differentiation, probably acting through dual mechanisms. May suppress CEBPB-dependent adipogenesis through direct interaction and PPARG-dependent adipogenesis through competition for DNA-binding. Downstream of IL6 and TGFB and synergistically with RORC isoform 2, is implicated in the lineage specification of uncommitted CD4(+) T-helper (T(H)) cells into T(H)17 cells, antagonizing the T(H)1 program. Probably regulates IL17 and IL17F expression on T(H) by binding to the essential enhancer conserved non-coding sequence 2 (CNS2) in the IL17-IL17F locus. Involved in hypoxia signaling by interacting with and activating the transcriptional activity of HIF1A. May inhibit cell growth in response to cellular stress. May exert an anti-inflammatory role by inducing CHUK expression and inhibiting NF-kappa-B signaling.
Pfam Domain Function
Transmembrane Regions
Not Available
Cellular Location
Nucleus
Gene sequence
>lcl|BSEQ0021397|Nuclear receptor ROR-alpha (RORA)
ATGAATGAGGGGGCCCCAGGAGACAGTGACTTAGAGACTGAGGCAAGAGTGCCGTGGTCA
ATCATGGGTCATTGTCTTCGAACTGGACAGGCCAGAATGTCTGCCACACCCACACCTGCA
GGTGAAGGAGCCAGAAGCTCTTCAACCTGTAGCTCCCTGAGCAGGCTGTTCTGGTCTCAA
CTTGAGCACATAAACTGGGATGGAGCCACAGCCAAGAACTTTATTAATTTAAGGGAGTTC
TTCTCTTTTCTGCTCCCTGCATTGAGAAAAGCTCAAATTGAAATTATTCCATGCAAGATC
TGTGGAGACAAATCATCAGGAATCCATTATGGTGTCATTACATGTGAAGGCTGCAAGGGC
TTTTTCAGGAGAAGTCAGCAAAGCAATGCCACCTACTCCTGTCCTCGTCAGAAGAACTGT
TTGATTGATCGAACCAGTAGAAACCGCTGCCAACACTGTCGATTACAGAAATGCCTTGCC
GTAGGGATGTCTCGAGATGCTGTAAAATTTGGCCGAATGTCAAAAAAGCAGAGAGACAGC
TTGTATGCAGAAGTACAGAAACACCGGATGCAGCAGCAGCAGCGCGACCACCAGCAGCAG
CCTGGAGAGGCTGAGCCGCTGACGCCCACCTACAACATCTCGGCCAACGGGCTGACGGAA
CTTCACGACGACCTCAGTAACTACATTGACGGGCACACCCCTGAGGGGAGTAAGGCAGAC
TCCGCCGTCAGCAGCTTCTACCTGGACATACAGCCTTCCCCAGACCAGTCAGGTCTTGAT
ATCAATGGAATCAAACCAGAACCAATATGTGACTACACACCAGCATCAGGCTTCTTTCCC
TACTGTTCGTTCACCAACGGCGAGACTTCCCCAACTGTGTCCATGGCAGAATTAGAACAC
CTTGCACAGAATATATCTAAATCGCATCTGGAAACCTGCCAATACTTGAGAGAAGAGCTC
CAGCAGATAACGTGGCAGACCTTTTTACAGGAAGAAATTGAGAACTATCAAAACAAGCAG
CGGGAGGTGATGTGGCAATTGTGTGCCATCAAAATTACAGAAGCTATACAGTATGTGGTG
GAGTTTGCCAAACGCATTGATGGATTTATGGAACTGTGTCAAAATGATCAAATTGTGCTT
CTAAAAGCAGGTTCTCTAGAGGTGGTGTTTATCAGAATGTGCCGTGCCTTTGACTCTCAG
AACAACACCGTGTACTTTGATGGGAAGTATGCCAGCCCCGACGTCTTCAAATCCTTAGGT
TGTGAAGACTTTATTAGCTTTGTGTTTGAATTTGGAAAGAGTTTATGTTCTATGCACCTG
ACTGAAGATGAAATTGCATTATTTTCTGCATTTGTACTGATGTCAGCAGATCGCTCATGG
CTGCAAGAAAAGGTAAAAATTGAAAAACTGCAACAGAAAATTCAGCTAGCTCTTCAACAC
GTCCTACAGAAGAATCACCGAGAAGATGGAATACTAACAAAGTTAATATGCAAGGTGTCT
ACATTAAGAGCCTTATGTGGACGACATACAGAAAAGCTAATGGCATTTAAAGCAATATAC
CCAGACATTGTGCGACTTCATTTTCCTCCATTATACAAGGAGTTGTTCACTTCAGAATTT
GAGCCAGCAATGCAAATTGATGGGTAA
Chromosome Location
15
Locus
Not Available
External Identifiers
ResourceLink
UniProtKB IDP35398
UniProtKB Entry NameRORA_HUMAN
HGNC IDHGNC:10258
General References
  1. Giguere V, Tini M, Flock G, Ong E, Evans RM, Otulakowski G: Isoform-specific amino-terminal domains dictate DNA-binding properties of ROR alpha, a novel family of orphan hormone nuclear receptors. Genes Dev. 1994 Mar 1;8(5):538-53. [Article]
  2. Becker-Andre M, Andre E, DeLamarter JF: Identification of nuclear receptor mRNAs by RT-PCR amplification of conserved zinc-finger motif sequences. Biochem Biophys Res Commun. 1993 Aug 16;194(3):1371-9. [Article]
  3. Zody MC, Garber M, Sharpe T, Young SK, Rowen L, O'Neill K, Whittaker CA, Kamal M, Chang JL, Cuomo CA, Dewar K, FitzGerald MG, Kodira CD, Madan A, Qin S, Yang X, Abbasi N, Abouelleil A, Arachchi HM, Baradarani L, Birditt B, Bloom S, Bloom T, Borowsky ML, Burke J, Butler J, Cook A, DeArellano K, DeCaprio D, Dorris L 3rd, Dors M, Eichler EE, Engels R, Fahey J, Fleetwood P, Friedman C, Gearin G, Hall JL, Hensley G, Johnson E, Jones C, Kamat A, Kaur A, Locke DP, Madan A, Munson G, Jaffe DB, Lui A, Macdonald P, Mauceli E, Naylor JW, Nesbitt R, Nicol R, O'Leary SB, Ratcliffe A, Rounsley S, She X, Sneddon KM, Stewart S, Sougnez C, Stone SM, Topham K, Vincent D, Wang S, Zimmer AR, Birren BW, Hood L, Lander ES, Nusbaum C: Analysis of the DNA sequence and duplication history of human chromosome 15. Nature. 2006 Mar 30;440(7084):671-5. [Article]
  4. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. [Article]
  5. Harding HP, Atkins GB, Jaffe AB, Seo WJ, Lazar MA: Transcriptional activation and repression by RORalpha, an orphan nuclear receptor required for cerebellar development. Mol Endocrinol. 1997 Oct;11(11):1737-46. [Article]
  6. Atkins GB, Hu X, Guenther MG, Rachez C, Freedman LP, Lazar MA: Coactivators for the orphan nuclear receptor RORalpha. Mol Endocrinol. 1999 Sep;13(9):1550-7. [Article]
  7. Lau P, Bailey P, Dowhan DH, Muscat GE: Exogenous expression of a dominant negative RORalpha1 vector in muscle cells impairs differentiation: RORalpha1 directly interacts with p300 and myoD. Nucleic Acids Res. 1999 Jan 15;27(2):411-20. [Article]
  8. Sundvold H, Lien S: Identification of a novel peroxisome proliferator-activated receptor (PPAR) gamma promoter in man and transactivation by the nuclear receptor RORalpha1. Biochem Biophys Res Commun. 2001 Sep 21;287(2):383-90. [Article]
  9. Delerive P, Monte D, Dubois G, Trottein F, Fruchart-Najib J, Mariani J, Fruchart JC, Staels B: The orphan nuclear receptor ROR alpha is a negative regulator of the inflammatory response. EMBO Rep. 2001 Jan;2(1):42-8. [Article]
  10. Raspe E, Duez H, Gervois P, Fievet C, Fruchart JC, Besnard S, Mariani J, Tedgui A, Staels B: Transcriptional regulation of apolipoprotein C-III gene expression by the orphan nuclear receptor RORalpha. J Biol Chem. 2001 Jan 26;276(4):2865-71. Epub 2000 Oct 26. [Article]
  11. Moraitis AN, Giguere V: The co-repressor hairless protects RORalpha orphan nuclear receptor from proteasome-mediated degradation. J Biol Chem. 2003 Dec 26;278(52):52511-8. Epub 2003 Oct 21. [Article]
  12. Miki N, Ikuta M, Matsui T: Hypoxia-induced activation of the retinoic acid receptor-related orphan receptor alpha4 gene by an interaction between hypoxia-inducible factor-1 and Sp1. J Biol Chem. 2004 Apr 9;279(15):15025-31. Epub 2004 Jan 23. [Article]
  13. Genoux A, Dehondt H, Helleboid-Chapman A, Duhem C, Hum DW, Martin G, Pennacchio LA, Staels B, Fruchart-Najib J, Fruchart JC: Transcriptional regulation of apolipoprotein A5 gene expression by the nuclear receptor RORalpha. Arterioscler Thromb Vasc Biol. 2005 Jun;25(6):1186-92. Epub 2005 Mar 24. [Article]
  14. Lind U, Nilsson T, McPheat J, Stromstedt PE, Bamberg K, Balendran C, Kang D: Identification of the human ApoAV gene as a novel RORalpha target gene. Biochem Biophys Res Commun. 2005 Apr 29;330(1):233-41. [Article]
  15. Zhu Y, McAvoy S, Kuhn R, Smith DI: RORA, a large common fragile site gene, is involved in cellular stress response. Oncogene. 2006 May 11;25(20):2901-8. [Article]
  16. Lechtken A, Hornig M, Werz O, Corvey N, Zundorf I, Dingermann T, Brandes R, Steinhilber D: Extracellular signal-regulated kinase-2 phosphorylates RORalpha4 in vitro. Biochem Biophys Res Commun. 2007 Jul 6;358(3):890-6. Epub 2007 May 11. [Article]
  17. Kim EJ, Yoo YG, Yang WK, Lim YS, Na TY, Lee IK, Lee MO: Transcriptional activation of HIF-1 by RORalpha and its role in hypoxia signaling. Arterioscler Thromb Vasc Biol. 2008 Oct;28(10):1796-802. doi: 10.1161/ATVBAHA.108.171546. Epub 2008 Jul 24. [Article]
  18. Du J, Huang C, Zhou B, Ziegler SF: Isoform-specific inhibition of ROR alpha-mediated transcriptional activation by human FOXP3. J Immunol. 2008 Apr 1;180(7):4785-92. [Article]
  19. Duplus E, Gras C, Soubeyre V, Vodjdani G, Lemaigre-Dubreuil Y, Brugg B: Phosphorylation and transcriptional activity regulation of retinoid-related orphan receptor alpha 1 by protein kinases C. J Neurochem. 2008 Mar;104(5):1321-32. Epub 2007 Nov 10. [Article]
  20. Hwang EJ, Lee JM, Jeong J, Park JH, Yang Y, Lim JS, Kim JH, Baek SH, Kim KI: SUMOylation of RORalpha potentiates transcriptional activation function. Biochem Biophys Res Commun. 2009 Jan 16;378(3):513-7. doi: 10.1016/j.bbrc.2008.11.072. Epub 2008 Nov 28. [Article]
  21. Jetten AM: Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. Nucl Recept Signal. 2009;7:e003. doi: 10.1621/nrs.07003. Epub 2009 Apr 3. [Article]
  22. Wang Y, Kumar N, Solt LA, Richardson TI, Helvering LM, Crumbley C, Garcia-Ordonez RD, Stayrook KR, Zhang X, Novick S, Chalmers MJ, Griffin PR, Burris TP: Modulation of retinoic acid receptor-related orphan receptor alpha and gamma activity by 7-oxygenated sterol ligands. J Biol Chem. 2010 Feb 12;285(7):5013-25. doi: 10.1074/jbc.M109.080614. Epub 2009 Dec 4. [Article]
  23. Poliandri AH, Gamsby JJ, Christian M, Spinella MJ, Loros JJ, Dunlap JC, Parker MG: Modulation of clock gene expression by the transcriptional coregulator receptor interacting protein 140 (RIP140). J Biol Rhythms. 2011 Jun;26(3):187-99. doi: 10.1177/0748730411401579. [Article]
  24. Solt LA, Kumar N, Nuhant P, Wang Y, Lauer JL, Liu J, Istrate MA, Kamenecka TM, Roush WR, Vidovic D, Schurer SC, Xu J, Wagoner G, Drew PD, Griffin PR, Burris TP: Suppression of TH17 differentiation and autoimmunity by a synthetic ROR ligand. Nature. 2011 Apr 28;472(7344):491-4. doi: 10.1038/nature10075. Epub 2011 Apr 17. [Article]
  25. Lamia KA, Papp SJ, Yu RT, Barish GD, Uhlenhaut NH, Jonker JW, Downes M, Evans RM: Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature. 2011 Dec 14;480(7378):552-6. doi: 10.1038/nature10700. [Article]
  26. Lee JM, Lee JS, Kim H, Kim K, Park H, Kim JY, Lee SH, Kim IS, Kim J, Lee M, Chung CH, Seo SB, Yoon JB, Ko E, Noh DY, Kim KI, Kim KK, Baek SH: EZH2 generates a methyl degron that is recognized by the DCAF1/DDB1/CUL4 E3 ubiquitin ligase complex. Mol Cell. 2012 Nov 30;48(4):572-86. doi: 10.1016/j.molcel.2012.09.004. Epub 2012 Oct 11. [Article]
  27. Solt LA, Burris TP: Action of RORs and their ligands in (patho)physiology. Trends Endocrinol Metab. 2012 Dec;23(12):619-27. doi: 10.1016/j.tem.2012.05.012. Epub 2012 Jul 11. [Article]
  28. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson D, Willson JK, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE: The consensus coding sequences of human breast and colorectal cancers. Science. 2006 Oct 13;314(5797):268-74. Epub 2006 Sep 7. [Article]
  29. Kallen JA, Schlaeppi JM, Bitsch F, Geisse S, Geiser M, Delhon I, Fournier B: X-ray structure of the hRORalpha LBD at 1.63 A: structural and functional data that cholesterol or a cholesterol derivative is the natural ligand of RORalpha. Structure. 2002 Dec;10(12):1697-707. [Article]
  30. Kallen J, Schlaeppi JM, Bitsch F, Delhon I, Fournier B: Crystal structure of the human RORalpha Ligand binding domain in complex with cholesterol sulfate at 2.2 A. J Biol Chem. 2004 Apr 2;279(14):14033-8. Epub 2004 Jan 13. [Article]

Drug Relations

Drug Relations
DrugBank IDNameDrug groupPharmacological action?ActionsDetails
DB01990Cholesterol sulfateexperimentalunknownDetails
DB04540Cholesterolapproved, investigationalunknownDetails