Dual specificity mitogen-activated protein kinase kinase 1

Details

Name
Dual specificity mitogen-activated protein kinase kinase 1
Synonyms
  • 2.7.12.2
  • ERK activator kinase 1
  • MAP kinase kinase 1
  • MAPK/ERK kinase 1
  • MEK 1
  • MEK1
  • PRKMK1
Gene Name
MAP2K1
Organism
Humans
Amino acid sequence
>lcl|BSEQ0001734|Dual specificity mitogen-activated protein kinase kinase 1
MPKKKPTPIQLNPAPDGSAVNGTSSAETNLEALQKKLEELELDEQQRKRLEAFLTQKQKV
GELKDDDFEKISELGAGNGGVVFKVSHKPSGLVMARKLIHLEIKPAIRNQIIRELQVLHE
CNSPYIVGFYGAFYSDGEISICMEHMDGGSLDQVLKKAGRIPEQILGKVSIAVIKGLTYL
REKHKIMHRDVKPSNILVNSRGEIKLCDFGVSGQLIDSMANSFVGTRSYMSPERLQGTHY
SVQSDIWSMGLSLVEMAVGRYPIPPPDAKELELMFGCQVEGDAAETPPRPRTPGRPLSSY
GMDSRPPMAIFELLDYIVNEPPPKLPSGVFSLEFQDFVNKCLIKNPAERADLKQLMVHAF
IKRSDAEEVDFAGWLCSTIGLNQPSTPTHAAGV
Number of residues
393
Molecular Weight
43438.65
Theoretical pI
6.61
GO Classification
Functions
ATP binding / MAP kinase kinase activity / protein C-terminus binding / protein kinase activity / protein N-terminus binding / protein serine/threonine kinase activator activity / protein serine/threonine kinase activity / protein serine/threonine/tyrosine kinase activity / protein tyrosine kinase activity / receptor signaling protein tyrosine phosphatase activity
Processes
activation of MAPK activity / activation of MAPKK activity / axon guidance / cell cycle arrest / cell motility / cellular senescence / chemotaxis / epidermal growth factor receptor signaling pathway / epithelial cell proliferation involved in lung morphogenesis / ERK1 and ERK2 cascade / Fc-epsilon receptor signaling pathway / fibroblast growth factor receptor signaling pathway / Golgi inheritance / innate immune response / insulin receptor signaling pathway / keratinocyte differentiation / labyrinthine layer development / MAPK cascade / melanosome transport / mitophagy in response to mitochondrial depolarization / mitotic nuclear division / movement of cell or subcellular component / MyD88-dependent toll-like receptor signaling pathway / MyD88-independent toll-like receptor signaling pathway / negative regulation of cell proliferation / negative regulation of gene expression / negative regulation of homotypic cell-cell adhesion / neurotrophin TRK receptor signaling pathway / placenta blood vessel development / positive regulation of axonogenesis / positive regulation of cell migration / positive regulation of gene expression / positive regulation of GTPase activity / positive regulation of protein serine/threonine kinase activity / positive regulation of Ras protein signal transduction / positive regulation of transcription elongation from RNA polymerase II promoter / protein heterooligomerization / Ras protein signal transduction / regulation of axon regeneration / regulation of early endosome to late endosome transport / regulation of Golgi inheritance / regulation of stress-activated MAPK cascade / regulation of vascular smooth muscle contraction / response to axon injury / response to glucocorticoid / response to oxidative stress / signal transduction / small GTPase mediated signal transduction / stress-activated MAPK cascade / toll-like receptor 10 signaling pathway / toll-like receptor 2 signaling pathway / toll-like receptor 3 signaling pathway / toll-like receptor 4 signaling pathway / toll-like receptor 5 signaling pathway / toll-like receptor 9 signaling pathway / toll-like receptor signaling pathway / toll-like receptor TLR1 / toll-like receptor TLR6 / trachea formation / TRIF-dependent toll-like receptor signaling pathway / vascular endothelial growth factor receptor signaling pathway / vesicle transport along microtubule
Components
axon / cell cortex / cytoplasm / cytosol / dendrite cytoplasm / early endosome / endoplasmic reticulum / extracellular exosome / focal adhesion / Golgi apparatus / late endosome / microtubule / microtubule organizing center / mitochondrion / nucleus / perikaryon / perinuclear region of cytoplasm / plasma membrane
General Function
Receptor signaling protein tyrosine phosphatase activity
Specific Function
Dual specificity protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. Binding of extracellular ligands such as growth factors, cytokines and hormones to their cell-surface receptors activates RAS and this initiates RAF1 activation. RAF1 then further activates the dual-specificity protein kinases MAP2K1/MEK1 and MAP2K2/MEK2. Both MAP2K1/MEK1 and MAP2K2/MEK2 function specifically in the MAPK/ERK cascade, and catalyze the concomitant phosphorylation of a threonine and a tyrosine residue in a Thr-Glu-Tyr sequence located in the extracellular signal-regulated kinases MAPK3/ERK1 and MAPK1/ERK2, leading to their activation and further transduction of the signal within the MAPK/ERK cascade. Depending on the cellular context, this pathway mediates diverse biological functions such as cell growth, adhesion, survival and differentiation, predominantly through the regulation of transcription, metabolism and cytoskeletal rearrangements. One target of the MAPK/ERK cascade is peroxisome proliferator-activated receptor gamma (PPARG), a nuclear receptor that promotes differentiation and apoptosis. MAP2K1/MEK1 has been shown to export PPARG from the nucleus. The MAPK/ERK cascade is also involved in the regulation of endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC), as well as in the fragmentation of the Golgi apparatus during mitosis.
Pfam Domain Function
Transmembrane Regions
Not Available
Cellular Location
Cytoplasm
Gene sequence
>lcl|BSEQ0016235|Dual specificity mitogen-activated protein kinase kinase 1 (MAP2K1)
ATGCCCAAGAAGAAGCCGACGCCCATCCAGCTGAACCCGGCCCCCGACGGCTCTGCAGTT
AACGGGACCAGCTCTGCGGAGACCAACTTGGAGGCCTTGCAGAAGAAGCTGGAGGAGCTA
GAGCTTGATGAGCAGCAGCGAAAGCGCCTTGAGGCCTTTCTTACCCAGAAGCAGAAGGTG
GGAGAACTGAAGGATGACGACTTTGAGAAGATCAGTGAGCTGGGGGCTGGCAATGGCGGT
GTGGTGTTCAAGGTCTCCCACAAGCCTTCTGGCCTGGTCATGGCCAGAAAGCTAATTCAT
CTGGAGATCAAACCCGCAATCCGGAACCAGATCATAAGGGAGCTGCAGGTTCTGCATGAG
TGCAACTCTCCGTACATCGTGGGCTTCTATGGTGCGTTCTACAGCGATGGCGAGATCAGT
ATCTGCATGGAGCACATGGATGGAGGTTCTCTGGATCAAGTCCTGAAGAAAGCTGGAAGA
ATTCCTGAACAAATTTTAGGAAAAGTTAGCATTGCTGTAATAAAAGGCCTGACATATCTG
AGGGAGAAGCACAAGATCATGCACAGAGATGTCAAGCCCTCCAACATCCTAGTCAACTCC
CGTGGGGAGATCAAGCTCTGTGACTTTGGGGTCAGCGGGCAGCTCATCGACTCCATGGCC
AACTCCTTCGTGGGCACAAGGTCCTACATGTCGCCAGAAAGACTCCAGGGGACTCATTAC
TCTGTGCAGTCAGACATCTGGAGCATGGGACTGTCTCTGGTAGAGATGGCGGTTGGGAGG
TATCCCATCCCTCCTCCAGATGCCAAGGAGCTGGAGCTGATGTTTGGGTGCCAGGTGGAA
GGAGATGCGGCTGAGACCCCACCCAGGCCAAGGACCCCCGGGAGGCCCCTTAGCTCATAC
GGAATGGACAGCCGACCTCCCATGGCAATTTTTGAGTTGTTGGATTACATAGTCAACGAG
CCTCCTCCAAAACTGCCCAGTGGAGTGTTCAGTCTGGAATTTCAAGATTTTGTGAATAAA
TGCTTAATAAAAAACCCCGCAGAGAGAGCAGATTTGAAGCAACTCATGGTTCATGCTTTT
ATCAAGAGATCTGATGCTGAGGAAGTGGATTTTGCAGGTTGGCTCTGCTCCACCATCGGC
CTTAACCAGCCCAGCACACCAACCCATGCTGCTGGCGTCTAA
Chromosome Location
15
Locus
15q22.1-q22.33
External Identifiers
ResourceLink
UniProtKB IDQ02750
UniProtKB Entry NameMP2K1_HUMAN
GenBank Protein ID188569
GenBank Gene IDL05624
GenAtlas IDMAP2K1
HGNC IDHGNC:6840
General References
  1. Seger R, Seger D, Lozeman FJ, Ahn NG, Graves LM, Campbell JS, Ericsson L, Harrylock M, Jensen AM, Krebs EG: Human T-cell mitogen-activated protein kinase kinases are related to yeast signal transduction kinases. J Biol Chem. 1992 Dec 25;267(36):25628-31. [PubMed:1281467]
  2. Zheng CF, Guan KL: Cloning and characterization of two distinct human extracellular signal-regulated kinase activator kinases, MEK1 and MEK2. J Biol Chem. 1993 May 25;268(15):11435-9. [PubMed:8388392]
  3. Stewart S, Sundaram M, Zhang Y, Lee J, Han M, Guan KL: Kinase suppressor of Ras forms a multiprotein signaling complex and modulates MEK localization. Mol Cell Biol. 1999 Aug;19(8):5523-34. [PubMed:10409742]
  4. Zheng CF, Guan KL: Activation of MEK family kinases requires phosphorylation of two conserved Ser/Thr residues. EMBO J. 1994 Mar 1;13(5):1123-31. [PubMed:8131746]
  5. Duesbery NS, Webb CP, Leppla SH, Gordon VM, Klimpel KR, Copeland TD, Ahn NG, Oskarsson MK, Fukasawa K, Paull KD, Vande Woude GF: Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science. 1998 May 1;280(5364):734-7. [PubMed:9563949]
  6. Vitale G, Bernardi L, Napolitani G, Mock M, Montecucco C: Susceptibility of mitogen-activated protein kinase kinase family members to proteolysis by anthrax lethal factor. Biochem J. 2000 Dec 15;352 Pt 3:739-45. [PubMed:11104681]
  7. Liu X, Yan S, Zhou T, Terada Y, Erikson RL: The MAP kinase pathway is required for entry into mitosis and cell survival. Oncogene. 2004 Jan 22;23(3):763-76. [PubMed:14737111]
  8. Beeser A, Jaffer ZM, Hofmann C, Chernoff J: Role of group A p21-activated kinases in activation of extracellular-regulated kinase by growth factors. J Biol Chem. 2005 Nov 4;280(44):36609-15. Epub 2005 Aug 29. [PubMed:16129686]
  9. Mukherjee S, Keitany G, Li Y, Wang Y, Ball HL, Goldsmith EJ, Orth K: Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science. 2006 May 26;312(5777):1211-4. [PubMed:16728640]
  10. Burgermeister E, Chuderland D, Hanoch T, Meyer M, Liscovitch M, Seger R: Interaction with MEK causes nuclear export and downregulation of peroxisome proliferator-activated receptor gamma. Mol Cell Biol. 2007 Feb;27(3):803-17. Epub 2006 Nov 13. [PubMed:17101779]
  11. Pohl C, Jentsch S: Final stages of cytokinesis and midbody ring formation are controlled by BRUCE. Cell. 2008 Mar 7;132(5):832-45. doi: 10.1016/j.cell.2008.01.012. [PubMed:18329369]
  12. Daub H, Olsen JV, Bairlein M, Gnad F, Oppermann FS, Korner R, Greff Z, Keri G, Stemmann O, Mann M: Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell. 2008 Aug 8;31(3):438-48. doi: 10.1016/j.molcel.2008.07.007. [PubMed:18691976]
  13. Won M, Park KA, Byun HS, Kim YR, Choi BL, Hong JH, Park J, Seok JH, Lee YH, Cho CH, Song IS, Kim YK, Shen HM, Hur GM: Protein kinase SGK1 enhances MEK/ERK complex formation through the phosphorylation of ERK2: implication for the positive regulatory role of SGK1 on the ERK function during liver regeneration. J Hepatol. 2009 Jul;51(1):67-76. doi: 10.1016/j.jhep.2009.02.027. Epub 2009 Apr 16. [PubMed:19447520]
  14. Oppermann FS, Gnad F, Olsen JV, Hornberger R, Greff Z, Keri G, Mann M, Daub H: Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics. 2009 Jul;8(7):1751-64. doi: 10.1074/mcp.M800588-MCP200. Epub 2009 Apr 15. [PubMed:19369195]
  15. Fernandez IF, Blanco S, Lozano J, Lazo PA: VRK2 inhibits mitogen-activated protein kinase signaling and inversely correlates with ErbB2 in human breast cancer. Mol Cell Biol. 2010 Oct;30(19):4687-97. doi: 10.1128/MCB.01581-09. Epub 2010 Aug 2. [PubMed:20679487]
  16. Dhanasekaran N, Premkumar Reddy E: Signaling by dual specificity kinases. Oncogene. 1998 Sep 17;17(11 Reviews):1447-55. [PubMed:9779990]
  17. Wellbrock C, Karasarides M, Marais R: The RAF proteins take centre stage. Nat Rev Mol Cell Biol. 2004 Nov;5(11):875-85. [PubMed:15520807]
  18. Yao Z, Seger R: The ERK signaling cascade--views from different subcellular compartments. Biofactors. 2009 Sep-Oct;35(5):407-16. doi: 10.1002/biof.52. [PubMed:19565474]
  19. Burkard TR, Planyavsky M, Kaupe I, Breitwieser FP, Burckstummer T, Bennett KL, Superti-Furga G, Colinge J: Initial characterization of the human central proteome. BMC Syst Biol. 2011 Jan 26;5:17. doi: 10.1186/1752-0509-5-17. [PubMed:21269460]
  20. Wortzel I, Seger R: The ERK Cascade: Distinct Functions within Various Subcellular Organelles. Genes Cancer. 2011 Mar;2(3):195-209. doi: 10.1177/1947601911407328. [PubMed:21779493]
  21. Bian Y, Song C, Cheng K, Dong M, Wang F, Huang J, Sun D, Wang L, Ye M, Zou H: An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics. 2014 Jan 16;96:253-62. doi: 10.1016/j.jprot.2013.11.014. Epub 2013 Nov 22. [PubMed:24275569]
  22. Ohren JF, Chen H, Pavlovsky A, Whitehead C, Zhang E, Kuffa P, Yan C, McConnell P, Spessard C, Banotai C, Mueller WT, Delaney A, Omer C, Sebolt-Leopold J, Dudley DT, Leung IK, Flamme C, Warmus J, Kaufman M, Barrett S, Tecle H, Hasemann CA: Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat Struct Mol Biol. 2004 Dec;11(12):1192-7. Epub 2004 Nov 14. [PubMed:15543157]
  23. Spicer JA, Rewcastle GW, Kaufman MD, Black SL, Plummer MS, Denny WA, Quin J 3rd, Shahripour AB, Barrett SD, Whitehead CE, Milbank JB, Ohren JF, Gowan RC, Omer C, Camp HS, Esmaeil N, Moore K, Sebolt-Leopold JS, Pryzbranowski S, Merriman RL, Ortwine DF, Warmus JS, Flamme CM, Pavlovsky AG, Tecle H: 4-anilino-5-carboxamido-2-pyridone derivatives as noncompetitive inhibitors of mitogen-activated protein kinase kinase. J Med Chem. 2007 Oct 18;50(21):5090-102. Epub 2007 Sep 19. [PubMed:17880056]
  24. Warmus JS, Flamme C, Zhang LY, Barrett S, Bridges A, Chen H, Gowan R, Kaufman M, Sebolt-Leopold J, Leopold W, Merriman R, Ohren J, Pavlovsky A, Przybranowski S, Tecle H, Valik H, Whitehead C, Zhang E: 2-Alkylamino- and alkoxy-substituted 2-amino-1,3,4-oxadiazoles-O-Alkyl benzohydroxamate esters replacements retain the desired inhibition and selectivity against MEK (MAP ERK kinase). Bioorg Med Chem Lett. 2008 Dec 1;18(23):6171-4. doi: 10.1016/j.bmcl.2008.10.015. Epub 2008 Oct 7. [PubMed:18951019]
  25. Fischmann TO, Smith CK, Mayhood TW, Myers JE, Reichert P, Mannarino A, Carr D, Zhu H, Wong J, Yang RS, Le HV, Madison VS: Crystal structures of MEK1 binary and ternary complexes with nucleotides and inhibitors. Biochemistry. 2009 Mar 31;48(12):2661-74. doi: 10.1021/bi801898e. [PubMed:19161339]
  26. Tecle H, Shao J, Li Y, Kothe M, Kazmirski S, Penzotti J, Ding YH, Ohren J, Moshinsky D, Coli R, Jhawar N, Bora E, Jacques-O'Hagan S, Wu J: Beyond the MEK-pocket: can current MEK kinase inhibitors be utilized to synthesize novel type III NCKIs? Does the MEK-pocket exist in kinases other than MEK? Bioorg Med Chem Lett. 2009 Jan 1;19(1):226-9. doi: 10.1016/j.bmcl.2008.10.108. Epub 2008 Oct 31. [PubMed:19019675]
  27. Iverson C, Larson G, Lai C, Yeh LT, Dadson C, Weingarten P, Appleby T, Vo T, Maderna A, Vernier JM, Hamatake R, Miner JN, Quart B: RDEA119/BAY 869766: a potent, selective, allosteric inhibitor of MEK1/2 for the treatment of cancer. Cancer Res. 2009 Sep 1;69(17):6839-47. doi: 10.1158/0008-5472.CAN-09-0679. Epub 2009 Aug 25. [PubMed:19706763]
  28. Wallace MB, Adams ME, Kanouni T, Mol CD, Dougan DR, Feher VA, O'Connell SM, Shi L, Halkowycz P, Dong Q: Structure-based design and synthesis of pyrrole derivatives as MEK inhibitors. Bioorg Med Chem Lett. 2010 Jul 15;20(14):4156-8. doi: 10.1016/j.bmcl.2010.05.058. Epub 2010 May 20. [PubMed:20621728]
  29. Dong Q, Dougan DR, Gong X, Halkowycz P, Jin B, Kanouni T, O'Connell SM, Scorah N, Shi L, Wallace MB, Zhou F: Discovery of TAK-733, a potent and selective MEK allosteric site inhibitor for the treatment of cancer. Bioorg Med Chem Lett. 2011 Mar 1;21(5):1315-9. doi: 10.1016/j.bmcl.2011.01.071. Epub 2011 Jan 22. [PubMed:21310613]
  30. Isshiki Y, Kohchi Y, Iikura H, Matsubara Y, Asoh K, Murata T, Kohchi M, Mizuguchi E, Tsujii S, Hattori K, Miura T, Yoshimura Y, Aida S, Miwa M, Saitoh R, Murao N, Okabe H, Belunis C, Janson C, Lukacs C, Schuck V, Shimma N: Design and synthesis of novel allosteric MEK inhibitor CH4987655 as an orally available anticancer agent. Bioorg Med Chem Lett. 2011 Mar 15;21(6):1795-801. doi: 10.1016/j.bmcl.2011.01.062. Epub 2011 Jan 21. [PubMed:21316218]
  31. Rodriguez-Viciana P, Tetsu O, Tidyman WE, Estep AL, Conger BA, Cruz MS, McCormick F, Rauen KA: Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome. Science. 2006 Mar 3;311(5765):1287-90. Epub 2006 Jan 26. [PubMed:16439621]
  32. Schulz AL, Albrecht B, Arici C, van der Burgt I, Buske A, Gillessen-Kaesbach G, Heller R, Horn D, Hubner CA, Korenke GC, Konig R, Kress W, Kruger G, Meinecke P, Mucke J, Plecko B, Rossier E, Schinzel A, Schulze A, Seemanova E, Seidel H, Spranger S, Tuysuz B, Uhrig S, Wieczorek D, Kutsche K, Zenker M: Mutation and phenotypic spectrum in patients with cardio-facio-cutaneous and Costello syndrome. Clin Genet. 2008 Jan;73(1):62-70. Epub 2007 Nov 27. [PubMed:18042262]

Drug Relations

Drug Relations
DrugBank IDNameDrug groupPharmacological action?ActionsDetails
DB031155-Bromo-N-(2,3-Dihydroxypropoxy)-3,4-Difluoro-2-[(2-Fluoro-4-Iodophenyl)Amino]BenzamideexperimentalunknownDetails
DB05239Cobimetinibapproved, investigationalyesinhibitorDetails
DB06892(5S)-4,5-difluoro-6-[(2-fluoro-4-iodophenyl)imino]-N-(2-hydroxyethoxy)cyclohexa-1,3-diene-1-carboxamideexperimentalunknownDetails
DB070462-[(2-chloro-4-iodophenyl)amino]-N-{[(2R)-2,3-dihydroxypropyl]oxy}-3,4-difluorobenzamideexperimentalunknownDetails
DB07101PD-0325901investigationalunknownDetails
DB02152K-252aexperimentalunknownDetails
DB08130N-(5-{3,4-difluoro-2-[(2-fluoro-4-iodophenyl)amino]phenyl}-1,3,4-oxadiazol-2-yl)ethane-1,2-diamineexperimentalunknownDetails
DB082082-[(4-ETHYNYL-2-FLUOROPHENYL)AMINO]-3,4-DIFLUORO-N-(2-HYDROXYETHOXY)BENZAMIDEexperimentalunknownDetails
DB06616BosutinibapprovedunknowninhibitorDetails
DB08911TrametinibapprovedyesantagonistinhibitorDetails