Recessive osteogenesis imperfecta caused by LEPRE1 mutations: clinical documentation and identification of the splice form responsible for prolyl 3-hydroxylation.

Article Details

Citation

Willaert A, Malfait F, Symoens S, Gevaert K, Kayserili H, Megarbane A, Mortier G, Leroy JG, Coucke PJ, De Paepe A

Recessive osteogenesis imperfecta caused by LEPRE1 mutations: clinical documentation and identification of the splice form responsible for prolyl 3-hydroxylation.

J Med Genet. 2009 Apr;46(4):233-41. doi: 10.1136/jmg.2008.062729. Epub 2008 Dec 16.

PubMed ID
19088120 [ View in PubMed
]
Abstract

BACKGROUND: Recessive forms of osteogenesis imperfecta (OI) may be caused by mutations in LEPRE1, encoding prolyl 3-hydroxylase-1 (P3H1) or in CRTAP, encoding cartilage associated protein. These proteins constitute together with cyclophilin B (CyPB) the prolyl 3-hydroxylation complex that hydroxylates the Pro986 residue in both the type I and type II collagen alpha1-chains. METHODS: We screened LEPRE1, CRTAP and PPIB (encoding CyPB) in a European/Middle Eastern cohort of 20 lethal/severe OI patients without a type I collagen mutation. RESULTS: Four novel homozygous and compound heterozygous mutations were identified in LEPRE1 in four probands. Two probands survived the neonatal period, including one patient who is the eldest reported patient (17 7/12 years) so far with P3H1 deficiency. At birth, clinical and radiologic features were hardly distinguishable from those in patients with autosomal dominant (AD) severe/lethal OI. Follow-up data reveal that the longer lived patients develop a severe osteochondrodysplasia that overlaps with, but has some distinctive features from, AD OI. A new splice site mutation was identified in two of the four probands, affecting only one of three LEPRE1 mRNA splice forms, detected in this study. The affected splice form encodes a 736 amino acid (AA) protein with a "KDEL" endoplasmic reticulum retention signal. While western blotting and immunocytochemical analysis of fibroblast cultures revealed absence of this P3H1 protein, mass spectrometry and SDS-urea-PAGE data showed severe reduction of alpha1(I)Pro986 3-hydroxylation and overmodification of type I (pro)collagen chains in skin fibroblasts of the patients. CONCLUSION: These findings suggest that the 3-hydroxylation function of P3H1 is restricted to the 736AA splice form.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Prolyl 3-hydroxylase 1Q32P28Details