Nitric oxide, nitrite, and Fnr regulation of hmp (flavohemoglobin) gene expression in Escherichia coli K-12.

Article Details

Citation

Poole RK, Anjum MF, Membrillo-Hernandez J, Kim SO, Hughes MN, Stewart V

Nitric oxide, nitrite, and Fnr regulation of hmp (flavohemoglobin) gene expression in Escherichia coli K-12.

J Bacteriol. 1996 Sep;178(18):5487-92.

PubMed ID
8808940 [ View in PubMed
]
Abstract

Escherichia coli possesses a soluble flavohemoglobin, with an unknown function, encoded by the hmp gene. A monolysogen containing an hmp-lacZ operon fusion was constructed to determine how the hmp promoter is regulated in response to heme ligands (O2, NO) or the presence of anaerobically utilized electron acceptors (nitrate, nitrite). Expression of the phi (hmp-lacZ)1 fusion was similar during aerobic growth in minimal medium containing glucose, glycerol, maltose, or sorbitol as a carbon source. Mutations in cya (encoding adenylate cyclase) or changes in medium pH between 5 and 9 were without effect on aerobic expression. Levels of aerobic and anaerobic expression in glucose-containing minimal media were similar; both were unaffected by an arcA mutation. Anaerobic, but not aerobic, expression of phi (hmp-lacZ)1 was stimulated three- to four-fold by an fnr mutation; an apparent Fnr-binding site is present in the hmp promoter. Iron depletion of rich broth medium by the chelator 2'2'-dipyridyl (0.1 mM) enhanced hmp expression 40-fold under anaerobic conditions, tentatively attributed to effects on Fnr. At a higher chelator concentration (0.4 mM), hmp expression was also stimulated aerobically. Anaerobic expression was stimulated 6-fold by the presence of nitrate and 25-fold by the presence of nitrite. Induction by nitrate or nitrite was unaffected by narL and/or narP mutations, demonstrating regulation of hmp by these ions via mechanisms alternative to those implicated in the regulation of other respiratory genes. Nitric oxide (10 to 20 microM) stimulated aerobic phi (hmp-lacZ)1 activity by up to 19-fold; soxS and soxR mutations only slightly reduced the NO effect. We conclude that hmp expression is negatively regulated by Fnr under anaerobic conditions and that additional regulatory mechanisms are involved in the responses to oxygen, nitrogen compounds, and iron availability. Hmp is implicated in reactions with small nitrogen compounds.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
FlavohemoproteinP24232Details