Gender-specific glycosylation of human glycodelin affects its contraceptive activity.

Article Details

Citation

Morris HR, Dell A, Easton RL, Panico M, Koistinen H, Koistinen R, Oehninger S, Patankar MS, Seppala M, Clark GF

Gender-specific glycosylation of human glycodelin affects its contraceptive activity.

J Biol Chem. 1996 Dec 13;271(50):32159-67.

PubMed ID
8943270 [ View in PubMed
]
Abstract

We have recently demonstrated that a human amniotic fluid-derived glycoprotein, glycodelin-A (GdA; previously known as PP14 or PAEP), potently inhibits gamete binding in an established sperm-egg binding system and expresses immunosuppressive activities directed against a variety of different immune cell types. GdA has high mannose-, hybrid-, and complex-type biantennary oligosaccharides including structures with fucosylated or sialylated N, N'-diacetyllactosediamine (GalNAcbeta1-4GlcNAc) sequences, which are rare in other human glycoproteins. We now report the characterization of glycodelin-S (GdS). This is a human seminal plasma glycoprotein that is immunologically indistinguishable from GdA, but unlike the latter, does not inhibit human sperm-zona pellucida binding under hemizona assay conditions. Analysis of the N-glycans of GdS by mass spectrometry revealed that all glycoforms of GdS are different from those of GdA. GdS glycans are unusually fucose-rich, and the major complex-type structures are biantennary glycans with Lewisx (Galbeta1-4(Fucalpha1-3)GlcNAc) and Lewisy (Fucalpha1-2Galbeta1-4(Fucalpha1-3)GlcNAc) antennae. It is probable that these highly fucosylated epitopes contribute to the immunosuppressive activity of human seminal plasma and to the low immunogenicity of sperm. This study provides the first evidence for gender-specific glycosylation that may serve to regulate key processes involved in human reproduction.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
GlycodelinP09466Details