A novel mutation (I143NT) in guanylate cyclase-activating protein 1 (GCAP1) associated with autosomal dominant cone degeneration.

Article Details

Citation

Nishiguchi KM, Sokal I, Yang L, Roychowdhury N, Palczewski K, Berson EL, Dryja TP, Baehr W

A novel mutation (I143NT) in guanylate cyclase-activating protein 1 (GCAP1) associated with autosomal dominant cone degeneration.

Invest Ophthalmol Vis Sci. 2004 Nov;45(11):3863-70.

PubMed ID
15505030 [ View in PubMed
]
Abstract

PURPOSE: To identify pathogenic mutations in the guanylate cyclase-activating protein 1 (GCAP1) and GCAP2 genes and to characterize the biochemical effect of mutation on guanylate cyclase (GC) stimulation. METHODS: The GCAP1 and GCAP2 genes were screened by direct sequencing for mutations in 216 patients and 421 patients, respectively, with various hereditary retinal diseases. A mutation in GCAP1 segregating with autosomal dominant cone degeneration was further evaluated biochemically by employing recombinant proteins, immunoblotting, Ca2+-dependent stimulation of GC, fluorescence emission spectra, and limited proteolysis in the absence and presence of Ca2+. RESULTS: A novel GCAP1 mutation, I143NT (substitution of Ile at codon 143 by Asn and Thr), affecting the EF4 Ca2+-binding loop, was identified in a heterozygote father and son with autosomal dominant cone degeneration. Both patients had much greater loss of cone function versus rod function; previous histopathologic evaluation of the father's eyes at autopsy (age 75 years) showed no foveal cones but a few, scattered cones remaining in the peripheral retina. Biochemical analysis showed that the GCAP1-I143NT mutant adopted a conformation susceptible to proteolysis, and the mutant inhibited GC only partially at high Ca2+ concentrations. Individual patients with atypical or recessive retinitis pigmentosa (RP) had additional heterozygous GCAP1-T114I and GCAP2 gene changes (V85M and F150C) of unknown pathogenicity. CONCLUSIONS: A novel GCAP1 mutation, I143NT, caused a form of autosomal dominant cone degeneration that destroys foveal cones by mid-life but spares some cones in the peripheral retina up to 75 years. Properties of the GCAP1-I143NT mutant protein suggested that it is incompletely inactivated by high Ca2+ concentrations as should occur with dark adaptation. The continued activity of the mutant GCAP1 likely results in higher-than-normal scotopic cGMP levels which may, in turn, account for the progressive loss of cones.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Guanylyl cyclase-activating protein 1P43080Details