Kv2.1 and silent Kv subunits underlie the delayed rectifier K+ current in cultured small mouse DRG neurons.

Article Details

Citation

Bocksteins E, Raes AL, Van de Vijver G, Bruyns T, Van Bogaert PP, Snyders DJ

Kv2.1 and silent Kv subunits underlie the delayed rectifier K+ current in cultured small mouse DRG neurons.

Am J Physiol Cell Physiol. 2009 Jun;296(6):C1271-8. doi: 10.1152/ajpcell.00088.2009. Epub 2009 Apr 8.

PubMed ID
19357235 [ View in PubMed
]
Abstract

Silent voltage-gated K(+) (K(v)) subunits interact with K(v)2 subunits and primarily modulate the voltage dependence of inactivation of these heterotetrameric channels. Both K(v)2 and silent K(v) subunits are expressed in the mammalian nervous system, but little is known about their expression and function in sensory neurons. This study reports the presence of K(v)2.1, K(v)2.2, and silent subunit K(v)6.1, K(v)8.1, K(v)9.1, K(v)9.2, and K(v)9.3 mRNA in mouse dorsal root ganglia (DRG). Immunocytochemistry confirmed the protein expression of K(v)2.x and K(v)9.x subunits in cultured small DRG neurons. To investigate if K(v)2 and silent K(v) subunits are underlying the delayed rectifier K(+) current (I(K)) in these neurons, K(v)2-mediated currents were isolated by the extracellular application of rStromatoxin-1 (ScTx) or by the intracellular application of K(v)2 antibodies. Both ScTx- and anti-K(v)2.1-sensitive currents displayed two components in their voltage dependence of inactivation. Together, both components accounted for approximately two-thirds of I(K). A comparison with results obtained in heterologous expression systems suggests that one component reflects homotetrameric K(v)2.1 channels, whereas the other component represents heterotetrameric K(v)2.1/silent K(v) channels. These observations support a physiological role for silent K(v) subunits in small DRG neurons.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Potassium voltage-gated channel subfamily B member 1Q14721Details