Identification of a KCNE2 gain-of-function mutation in patients with familial atrial fibrillation.

Article Details

Citation

Yang Y, Xia M, Jin Q, Bendahhou S, Shi J, Chen Y, Liang B, Lin J, Liu Y, Liu B, Zhou Q, Zhang D, Wang R, Ma N, Su X, Niu K, Pei Y, Xu W, Chen Z, Wan H, Cui J, Barhanin J, Chen Y

Identification of a KCNE2 gain-of-function mutation in patients with familial atrial fibrillation.

Am J Hum Genet. 2004 Nov;75(5):899-905. Epub 2004 Sep 13.

PubMed ID
15368194 [ View in PubMed
]
Abstract

Atrial fibrillation (AF) is the most common cardiac arrhythmia encountered in clinical practice. We first reported an S140G mutation of KCNQ1, an alpha subunit of potassium channels, in one Chinese kindred with AF. However, the molecular defects and cellular mechanisms in most patients with AF remain to be identified. We evaluated 28 unrelated Chinese kindreds with AF and sequenced eight genes of potassium channels (KCNQ1, HERG, KCNE1, KCNE2, KCNE3, KCNE4, KCNE5, and KCNJ2). An arginine-to-cysteine mutation at position 27 (R27C) of KCNE2, the beta subunit of the KCNQ1-KCNE2 channel responsible for a background potassium current, was found in 2 of the 28 probands. The mutation was present in all affected members in the two kindreds and was absent in 462 healthy unrelated Chinese subjects. Similar to KCNQ1 S140G, the mutation had a gain-of-function effect on the KCNQ1-KCNE2 channel; unlike long QT syndrome-associated KCNE2 mutations, it did not alter HERG-KCNE2 current. The mutation did not alter the functions of the HCN channel family either. Thus, KCNE2 R27C is a gain-of-function mutation associated with the initiation and/or maintenance of AF.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Potassium voltage-gated channel subfamily E member 2Q9Y6J6Details