Broadly effective metabolic and immune recovery with C5 inhibition in CHAPLE disease.

Article Details

Citation

Ozen A, Kasap N, Vujkovic-Cvijin I, Apps R, Cheung F, Karakoc-Aydiner E, Akkelle B, Sari S, Tutar E, Ozcay F, Uygun DK, Islek A, Akgun G, Selcuk M, Sezer OB, Zhang Y, Kutluk G, Topal E, Sayar E, Celikel C, Houwen RHJ, Bingol A, Ogulur I, Eltan SB, Snow AL, Lake C, Fantoni G, Alba C, Sellers B, Chauvin SD, Dalgard CL, Harari O, Ni YG, Wang MD, Devalaraja-Narashimha K, Subramanian P, Ergelen R, Artan R, Guner SN, Dalgic B, Tsang J, Belkaid Y, Ertem D, Baris S, Lenardo MJ

Broadly effective metabolic and immune recovery with C5 inhibition in CHAPLE disease.

Nat Immunol. 2021 Feb;22(2):128-139. doi: 10.1038/s41590-020-00830-z. Epub 2021 Jan 4.

PubMed ID
33398182 [ View in PubMed
]
Abstract

Complement hyperactivation, angiopathic thrombosis and protein-losing enteropathy (CHAPLE disease) is a lethal disease caused by genetic loss of the complement regulatory protein CD55, leading to overactivation of complement and innate immunity together with immunodeficiency due to immunoglobulin wasting in the intestine. We report in vivo human data accumulated using the complement C5 inhibitor eculizumab for the medical treatment of patients with CHAPLE disease. We observed cessation of gastrointestinal pathology together with restoration of normal immunity and metabolism. We found that patients rapidly renormalized immunoglobulin concentrations and other serum proteins as revealed by aptamer profiling, re-established a healthy gut microbiome, discontinued immunoglobulin replacement and other treatments and exhibited catch-up growth. Thus, we show that blockade of C5 by eculizumab effectively re-establishes regulation of the innate immune complement system to substantially reduce the pathophysiological manifestations of CD55 deficiency in humans.

DrugBank Data that Cites this Article

Drugs