Population pharmacokinetic meta-analysis of denosumab in healthy subjects and postmenopausal women with osteopenia or osteoporosis.

Article Details

Citation

Sutjandra L, Rodriguez RD, Doshi S, Ma M, Peterson MC, Jang GR, Chow AT, Perez-Ruixo JJ

Population pharmacokinetic meta-analysis of denosumab in healthy subjects and postmenopausal women with osteopenia or osteoporosis.

Clin Pharmacokinet. 2011 Dec 1;50(12):793-807. doi: 10.2165/11594240-000000000-00000.

PubMed ID
22087866 [ View in PubMed
]
Abstract

BACKGROUND AND OBJECTIVE: Inhibition of the receptor activator of nuclear factor kappa-B ligand (RANKL) is a therapeutic target for treatment of bone disorders associated with increased bone resorption, such as osteoporosis. The objective of this analysis was to characterize the population pharmacokinetics of denosumab (AMG 162; Prolia(R)), a fully human IgG2 monoclonal antibody that binds to RANKL, in healthy subjects and postmenopausal women with osteopenia or osteoporosis. METHODS: A total of 22944 serum free denosumab concentrations from 495 healthy subjects and 1069 postmenopausal women with osteopenia or osteoporosis were pooled. Denosumab was administered as either a single intravenous dose (n = 36), a single subcutaneous dose (n = 469) or multiple subcutaneous doses (n = 1059), ranging from 0.01 to 3 mg/kg (or 6-210 mg as fixed mass dosages), every 3 or 6 months for up to 48 months. An open, two-compartment pharmacokinetic model with a quasi-steady-state approximation of the target-mediated drug disposition model was used to describe denosumab pharmacokinetics, using NONMEM Version 7.1.0 software. Subcutaneous absorption was characterized by the first-order absorption rate constant (k(a)), with constant absolute bioavailability over the range of doses that were evaluated. Clearance and volume of distribution parameters were scaled by body weight, using a power model. Model evaluation was performed through visual predictive checks. RESULTS: The subcutaneous bioavailability of denosumab was 64%, and the k(a) was 0.00883 h-1. The central volume of distribution and linear clearance were 2.49 L/66 kg and 3.06 mL/h/66 kg, respectively. The baseline RANKL level, quasi-steady-state constant and RANKL degradation rate were 614 ng/mL, 138 ng/mL and 0.00148 h-1, respectively. Between-subject variability in model parameters was moderate. A fixed dose of 60 mg provided RANKL inhibition similar to that achieved by equivalent body weight-based dosing. The effects of age and race on the area under the serum concentration-time curve of denosumab were less than 15% over the range of covariate values that were evaluated. CONCLUSIONS: The non-linearity in denosumab pharmacokinetics is probably due to RANKL binding, and denosumab dose adjustment based on the patient demographics is not warranted.

DrugBank Data that Cites this Article

Drugs