2,4-Diamino-5-methyl-6-substituted arylthio-furo[2,3-d]pyrimidines as novel classical and nonclassical antifolates as potential dual thymidylate synthase and dihydrofolate reductase inhibitors.

Article Details

Citation

Gangjee A, Jain HD, Phan J, Guo X, Queener SF, Kisliuk RL

2,4-Diamino-5-methyl-6-substituted arylthio-furo[2,3-d]pyrimidines as novel classical and nonclassical antifolates as potential dual thymidylate synthase and dihydrofolate reductase inhibitors.

Bioorg Med Chem. 2010 Jan 15;18(2):953-61. doi: 10.1016/j.bmc.2009.11.029. Epub 2009 Dec 26.

PubMed ID
20056546 [ View in PubMed
]
Abstract

A novel classical antifolate N-{4-[(2,4-diamino-5-methyl-furo[2,3-d]pyrimidin-6-yl)thio]-benzoyl}-l-glutamic acid 5 and 11 nonclassical antifolates 6-16 were designed, synthesized, and evaluated as inhibitors of dihydrofolate reductase (DHFR) and thymidylate synthase (TS). The nonclassical compounds 6-16 were synthesized from 20 via oxidative addition of substituted thiophenols using iodine. Peptide coupling of the intermediate acid 21 followed by saponification gave the classical analog 5. Compound 5 is the first example, to our knowledge, of a 2,4-diamino furo[2,3-d]pyrimidine classical antifolate that has inhibitory activity against both human DHFR and human TS. The classical analog 5 was a nanomolar inhibitor and remarkably selective inhibitor of Pneumocystis carinii DHFR and Mycobacterium avium DHFR at 263-fold and 2107-fold, respectively, compared to mammalian DHFR. The nonclassical analogs 6-16 were moderately potent against pathogen DHFR or TS. This study shows that the furo[2,3-d]pyrimidine scaffold is conducive to dual human DHFR-TS inhibitory activity and to high potency and selectivity for pathogen DHFR.

DrugBank Data that Cites this Article

Binding Properties
DrugTargetPropertyMeasurementpHTemperature (°C)
MethotrexateDihydrofolate reductaseIC 50 (nM)22N/AN/ADetails
MethotrexateThymidylate synthaseIC 50 (nM)29000N/AN/ADetails