Regulation of phosphatidylinositol turnover in brain synaptoneurosomes: stimulatory effects of agents that enhance influx of sodium ions.

Article Details

Citation

Gusovsky F, Hollingsworth EB, Daly JW

Regulation of phosphatidylinositol turnover in brain synaptoneurosomes: stimulatory effects of agents that enhance influx of sodium ions.

Proc Natl Acad Sci U S A. 1986 May;83(9):3003-7.

PubMed ID
2422664 [ View in PubMed
]
Abstract

Norepinephrine and carbamoylcholine stimulate accumulation of [3H]inositol phosphates from [3H]inositol-labeled guinea pig cerebral cortical synaptoneurosomes through interaction with alpha 1-adrenergic and muscarinic receptors, respectively. In addition to such agonist, a variety of natural products that affect voltage-dependent sodium channels can markedly stimulate accumulation of [3H]inositol phosphates. These include alkaloids that activate sodium channels, such as batrachotoxin, veratridine, and aconitine; peptide toxins that alter activation or slow inactivation of sodium channels, such as various scorpion toxins from Leiurus, Centruroides, and Tityus species; and agents that cause repetitive firing of sodium channel-dependent action potentials, such as pyrethroids and pumiliotoxin B. Ouabain, and agent that will increase accumulation of internal sodium by inhibition of Na+, K+-ATPase, also stimulates formation of [3H]inositol phosphates, as does monensin, a sodium ionophore. Tetrodotoxin and saxitoxin, specific blockers of voltage-dependent sodium channels, prevent or reduce the stimulatory effects of sodium channel agents and ouabain on phosphatidylinositol turnover, while having lesser or no effect, respectively, on receptor-mediated or monensin-mediated stimulation. Removal of extracellular sodium ions markedly reduces stimulatory effects of sodium channel agents, while removal of extracellular calcium ions with EGTA blocks both receptor-mediated and sodium channel agent-mediated phosphatidylinositol turnover. The results provide evidence for a hitherto unsuspected messenger role for sodium ions in excitable tissue, whereby neuronal activity and the resultant influx of sodium will cause activation of phospholipase systems involved in hydrolysis of phosphatidylinositols, thereby generating two second messengers, the inositol phosphates, which mobilize calcium from internal stores, and the diacylglycerols, which activate protein kinase C.

DrugBank Data that Cites this Article

Drugs