Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene.

Article Details

Citation

Bu DF, Erlander MG, Hitz BC, Tillakaratne NJ, Kaufman DL, Wagner-McPherson CB, Evans GA, Tobin AJ

Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene.

Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2115-9.

PubMed ID
1549570 [ View in PubMed
]
Abstract

We report the isolation and sequencing of cDNAs encoding two human glutamate decarboxylases (GADs; L-glutamate 1-carboxy-lyase, EC 4.1.1.15), GAD65 and GAD67. Human GAD65 cDNA encodes a Mr 65,000 polypeptide, with 585 amino acid residues, whereas human GAD67 encodes a Mr 67,000 polypeptide, with 594 amino acid residues. Both cDNAs direct the synthesis of enzymatically active GADs in bacterial expression systems. Each cDNA hybridizes to a single species of brain mRNA and to a specific set of restriction fragments in human genomic DNA. In situ hybridization of fluorescently labeled GAD probes to human chromosomes localizes the human GAD65 gene to chromosome 10p11.23 and the human GAD67 gene to chromosome 2q31. We conclude that GAD65 and GAD67 each derive from a single separate gene. The cDNAs we describe should allow the bacterial production of test antigens for the diagnosis and prediction of insulin-dependent diabetes mellitus.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Glutamate decarboxylase 1Q99259Details
Glutamate decarboxylase 2Q05329Details