Molecular pathology of gyrate atrophy of the choroid and retina due to ornithine aminotransferase deficiency.

Article Details

Citation

Ramesh V, Gusella JF, Shih VE

Molecular pathology of gyrate atrophy of the choroid and retina due to ornithine aminotransferase deficiency.

Mol Biol Med. 1991 Feb;8(1):81-93.

PubMed ID
1682785 [ View in PubMed
]
Abstract

Gyrate atrophy (GA) is an autosomal recessive eye disease characterized by progressive loss of vision due to chorioretinal degeneration. It is associated with a deficiency of the mitochondrial enzyme ornithine aminotransferase (OATase) with consequent hyperornithinemia. Although the clinical phenotype is largely confined to the eye, OATase deficiency is a systemic disorder. A step toward delineation of the enzyme defect in GA at the molecular level has been made by cloning and characterizing the cDNA and structural gene for OATase. The structural gene for OATase maps to chromosome 10 (10q26) and OATase-related sequences map to the X chromosome (Xp11.2). A diverse number of mutations at the OATase locus in GA patients of varied ethnic origins have been defined employing polymerase chain reaction and other molecular biological techniques. The majority of these mutations are of the missense type although a splicing mutation in one patient has recently been identified. The functional consequences of some of these mutations have been tested and confirmed in a eukaryotic expression system. These mutations demonstrate the allelic heterogeneity, which extends to both pyridoxine responsive and non-responsive forms of GA, reflecting the clinical and biochemical heterogeneity observed in this disease. The molecular studies in addition to providing information on the structure/function of the enzyme will facilitate understanding of the retinal pathophysiology in this disorder.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Ornithine aminotransferase, mitochondrialP04181Details