Suicidal inactivation of human dihydropyrimidine dehydrogenase by (E)-5-(2-bromovinyl)uracil derived from the antiviral, sorivudine.

Article Details

Citation

Ogura K, Nishiyama T, Takubo H, Kato A, Okuda H, Arakawa K, Fukushima M, Nagayama S, Kawaguchi Y, Watabe T

Suicidal inactivation of human dihydropyrimidine dehydrogenase by (E)-5-(2-bromovinyl)uracil derived from the antiviral, sorivudine.

Cancer Lett. 1998 Jan 9;122(1-2):107-13.

PubMed ID
9464498 [ View in PubMed
]
Abstract

An enzymatic study was performed to clarify the mechanism of 18 acute deaths in patients who had received the new oral antiviral drug, sorivudine (SRV), during anticancer chemotherapy with 5-fluorouracil (5-FU) prodrugs. Human dihydropyrimidine dehydrogenase (hDPD), playing a key role in the liver as the rate-limiting enzyme in catabolism of 5-FU, was expressed in E. coli, purified and incubated in the presence of NADPH with SRV or (E)-5-(2-bromovinyl)uracil (BVU), a metabolite of SRV produced by human gut flora. hDPD was rapidly and irreversibly inactivated by BVU, but not by SRV. Radioactivity of [14C]BVU was incorporated into hDPD in the presence of NADPH in a manner reciprocal to the enzyme inactivation. In the absence of NADPH, hDPD was not inactivated by BVU, nor radiolabeled with [14C]BVU. Thus, as we demonstrated previously with studies using the rat, the acute deaths were strongly suggested to be attributable to markedly elevated tissue 5-FU levels which were responsible for irreversible inhibition of hDPD by covalent binding of a reduced form of BVU as a suicide inactivator.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Dihydropyrimidine dehydrogenase [NADP(+)]Q12882Details