Cellular mechanisms for human procollagenase-3 (MMP-13) activation. Evidence that MT1-MMP (MMP-14) and gelatinase a (MMP-2) are able to generate active enzyme.

Article Details

Citation

Knauper V, Will H, Lopez-Otin C, Smith B, Atkinson SJ, Stanton H, Hembry RM, Murphy G

Cellular mechanisms for human procollagenase-3 (MMP-13) activation. Evidence that MT1-MMP (MMP-14) and gelatinase a (MMP-2) are able to generate active enzyme.

J Biol Chem. 1996 Jul 19;271(29):17124-31.

PubMed ID
8663255 [ View in PubMed
]
Abstract

Gelatinase A and membrane-type metalloproteinase (MT1-MMP) were able to process human procollagenase-3 (Mr 60,000) to the fully active enzyme (Tyr85 N terminus; Mr 48,000). MT1-MMP activated procollagenase-3 via a Mr 56,000 intermediate (Ile36 N terminus) to 48,000 which was the result of the cleavage of the Glu84-Tyr85 peptide bond. We have established that the activation rate of procollagenase-3 by MT1-MMP was enhanced in the presence of progelatinase A, thereby demonstrating a unique new activation cascade consisting of three members of the matrix metalloproteinase family. In addition, procollagenase-3 can be activated by plasmin, which cleaved the Lys38-Glu39 and Arg76-Cys77 peptide bonds in the propeptide domain. Autoproteolysis then resulted in the release of the rest of the propeptide domain generating Tyr85 N-terminal active collagenase-3. However, plasmin cleaved the C-terminal domain of collagenase-3 which results in the loss of its collagenolytic activity. Concanavalin A-stimulated fibroblasts expressing MT1-MMP and fibroblast-derived plasma membranes were able to process human procollagenase-3 via a Mr 56,000 intermediate form to the final Mr 48,000 active enzyme which, by analogy with progelatinase A activation, may represent a model system for in vivo activation. Inhibition experiments using tissue inhibitor of metalloproteinases, plasminogen activator inhibitor-2, or aprotinin demonstrated that activation in the cellular model system was due to MT1-MMP/gelatinase A and excluded the participation of serine proteinases such as plasmin during procollagenase-3 activation. We have established that progelatinase A can considerably potentiate the activation rate of procollagenase-3 by crude plasma membrane preparations from concanavalin A-stimulated fibroblasts, thus confirming our results using purified progelatinase A and MT1-MMP. This new activation cascade may be significant in human breast cancer pathology, where all three enzymes have been implicated as playing important roles.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Collagenase 3P45452Details