Large-scale structural analysis of the classical human protein tyrosine phosphatome.

Article Details

Citation

Barr AJ, Ugochukwu E, Lee WH, King ON, Filippakopoulos P, Alfano I, Savitsky P, Burgess-Brown NA, Muller S, Knapp S

Large-scale structural analysis of the classical human protein tyrosine phosphatome.

Cell. 2009 Jan 23;136(2):352-63. doi: 10.1016/j.cell.2008.11.038.

PubMed ID
19167335 [ View in PubMed
]
Abstract

Protein tyrosine phosphatases (PTPs) play a critical role in regulating cellular functions by selectively dephosphorylating their substrates. Here we present 22 human PTP crystal structures that, together with prior structural knowledge, enable a comprehensive analysis of the classical PTP family. Despite their largely conserved fold, surface properties of PTPs are strikingly diverse. A potential secondary substrate-binding pocket is frequently found in phosphatases, and this has implications for both substrate recognition and development of selective inhibitors. Structural comparison identified four diverse catalytic loop (WPD) conformations and suggested a mechanism for loop closure. Enzymatic assays revealed vast differences in PTP catalytic activity and identified PTPD1, PTPD2, and HDPTP as catalytically inert protein phosphatases. We propose a "head-to-toe" dimerization model for RPTPgamma/zeta that is distinct from the "inhibitory wedge" model and that provides a molecular basis for inhibitory regulation. This phosphatome resource gives an expanded insight into intrafamily PTP diversity, catalytic activity, substrate recognition, and autoregulatory self-association.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Tyrosine-protein phosphatase non-receptor type 11Q06124Details
Receptor-type tyrosine-protein phosphatase epsilonP23469Details
Receptor-type tyrosine-protein phosphatase betaP23467Details