Molecular architecture of full-length KcsA: role of cytoplasmic domains in ion permeation and activation gating.

Article Details

Citation

Cortes DM, Cuello LG, Perozo E

Molecular architecture of full-length KcsA: role of cytoplasmic domains in ion permeation and activation gating.

J Gen Physiol. 2001 Feb;117(2):165-80.

PubMed ID
11158168 [ View in PubMed
]
Abstract

The molecular architecture of the NH(2) and COOH termini of the prokaryotic potassium channel KcsA has been determined using site-directed spin-labeling methods and paramagnetic resonance EPR spectroscopy. Cysteine mutants were generated (residues 5-24 and 121-160) and spin labeled, and the X-band CW EPR spectra were obtained from liposome-reconstituted channels at room temperature. Data on probe mobility (DeltaHo(-1)), accessibility parameters (PiO(2) and PiNiEdda), and inter-subunit spin-spin interaction (Omega) were used as structural constraints to build a three-dimensional folding model of these cytoplasmic domains from a set of simulated annealing and restrained molecular dynamics runs. 32 backbone structures were generated and averaged using fourfold symmetry, and a final mean structure was obtained from the eight lowest energy runs. Based on the present data, together with information from the KcsA crystal structure, a model for the three-dimensional fold of full-length KcsA was constructed. In this model, the NH(2) terminus of KcsA forms an alpha-helix anchored at the membrane-water interface, while the COOH terminus forms a right-handed four-helix bundle that extend some 40-50 A towards the cytoplasm. Functional analysis of COOH-terminal deletion constructs suggest that, while the COOH terminus does not play a substantial role in determining ion permeation properties, it exerts a modulatory role in the pH-dependent gating mechanism.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
pH-gated potassium channel KcsAP0A334Details