2-Amino-3-ketobutyrate CoA ligase of Escherichia coli: stoichiometry of pyridoxal phosphate binding and location of the pyridoxyllysine peptide in the primary structure of the enzyme.

Article Details

Citation

Mukherjee JJ, Dekker EE

2-Amino-3-ketobutyrate CoA ligase of Escherichia coli: stoichiometry of pyridoxal phosphate binding and location of the pyridoxyllysine peptide in the primary structure of the enzyme.

Biochim Biophys Acta. 1990 Jan 19;1037(1):24-9.

PubMed ID
2104756 [ View in PubMed
]
Abstract

Pure 2-amino-3-ketobutyrate CoA ligase from Escherichia coli, which catalyzes the cleavage/condensation reaction between 2-amino-3-ketobutyrate (the presumed product of the L-threonine dehydrogenase-catalyzed reaction) and glycine + acetyl-CoA, is a dimeric enzyme (Mr = 84,000) that requires pyridoxal 5'-phosphate as coenzyme for catalytic activity. Reduction of the hololigase with tritiated NaBH4 yields an inactive, radioactive enzyme adduct; acid hydrolysis of this adduct allowed for the isolation and identification of epsilon-N-pyridoxyllysine. Quantitative determinations established that 2 mol of pyridoxal 5'-phosphate are bound per mol of dimeric enzyme. After the inactive, tritiated enzyme adduct was digested with trypsin, a single radioactive peptide containing 23 amino acids was isolated and found to have the following primary structure: Val-Asp-Ile-Ile-Thr-Gly-Thr-Leu-Gly-Lys*-Ala-Leu-Gly-Gly-Ala-Ser-Gly-Gly -Tyr-Thr-Ala-Ala-Arg (where * = the lysine residue in azomethine linkage with pyridoxal 5'-phosphate). This peptide corresponds to residues 235-257 in the intact protein; 10 residues around the lysine residue have a high level of homology with a segment of the primary structure of 5-aminolevulinate synthase from chicken liver.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
2-amino-3-ketobutyrate coenzyme A ligaseP0AB77Details