Mechanism of action of dexniguldipine-HCl (B8509-035), a new potent modulator of multidrug resistance.

Article Details

Citation

Hofmann J, Gekeler V, Ise W, Noller A, Mitterdorfer J, Hofer S, Utz I, Gotwald M, Boer R, Glossmann H, et al.

Mechanism of action of dexniguldipine-HCl (B8509-035), a new potent modulator of multidrug resistance.

Biochem Pharmacol. 1995 Mar 1;49(5):603-9. doi: 10.1016/0006-2952(94)00479-6.

PubMed ID
7887974 [ View in PubMed
]
Abstract

It has previously been shown that dexniguldipine-HCl (B8509-035) is a potent chemosensitizer in multidrug resistant cells [Hofmann et al., J Cancer Res Clin Oncol 118: 361-366, 1992]. It is shown here that dexniguldipine-HCl causes a dose-dependent reduction of the labeling of the P-glycoprotein by azidopine, indicating a competition of dexniguldipine-HCl with the photoaffinity label for the multidrug resistance gene 1 (MDR-1) product. Exposure to dexniguldipine-HCl results in a dose-dependent accumulation of rhodamine 123 in MDR-1 overexpressing cells. In the presence of 1 microM dexniguldipine-HCl, rhodamine 123 accumulated in multidrug resistant cells to similar levels as in the sensitive parental cell lines. At this concentration, dexniguldipine-HCl enhances the cytotoxicities of Adriamycin and vincristine. The resistance modulating factors (RMF), i.e. IC50 drug/IC50 drug + modulator, were found to be proportional to the expression of MDR-1, ranging from 8 to 42 for Adriamycin and from 16 to 63 for vincristine. Transfection with the MDR-1 gene was found to be sufficient to sensitize cells to the modulation by dexniguldipine-HCl. The compound does not affect the expression of the MDR-1 gene. Dexniguldipine-HCl has no effect on a multidrug resistant phenotype caused by a mutation of topoisomerase II. It is concluded that dexniguldipine-HCl modulates multidrug resistance by direct interaction with the P-glycoprotein.

DrugBank Data that Cites this Article

Drug Targets
DrugTargetKindOrganismPharmacological ActionActions
DexniguldipineP-glycoprotein 1ProteinHumans
Unknown
Inhibitor
Details