Related F-box proteins control cell death in Caenorhabditis elegans and human lymphoma.

Article Details

Citation

Chiorazzi M, Rui L, Yang Y, Ceribelli M, Tishbi N, Maurer CW, Ranuncolo SM, Zhao H, Xu W, Chan WC, Jaffe ES, Gascoyne RD, Campo E, Rosenwald A, Ott G, Delabie J, Rimsza LM, Shaham S, Staudt LM

Related F-box proteins control cell death in Caenorhabditis elegans and human lymphoma.

Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):3943-8. doi: 10.1073/pnas.1217271110. Epub 2013 Feb 19.

PubMed ID
23431138 [ View in PubMed
]
Abstract

Cell death is a common metazoan cell fate, and its inactivation is central to human malignancy. In Caenorhabditis elegans, apoptotic cell death occurs via the activation of the caspase CED-3 following binding of the EGL-1/BH3-only protein to the antiapoptotic CED-9/BCL2 protein. Here we report a major alternative mechanism for caspase activation in vivo involving the F-box protein DRE-1. DRE-1 functions in parallel to EGL-1, requires CED-9 for activity, and binds to CED-9, suggesting that DRE-1 promotes apoptosis by inactivating CED-9. FBXO10, a human protein related to DRE-1, binds BCL2 and promotes its degradation, thereby initiating cell death. Moreover, some human diffuse large B-cell lymphomas have inactivating mutations in FBXO10 or express FBXO10 at low levels. Our results suggest that DRE-1/FBXO10 is a conserved regulator of apoptosis.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Apoptosis regulator Bcl-2P10415Details
S-phase kinase-associated protein 1P63208Details