Inactivation of monomeric sarcosine oxidase by reaction with N-(cyclopropyl)glycine.

Article Details

Citation

Zhao G, Qu J, Davis FA, Jorns MS

Inactivation of monomeric sarcosine oxidase by reaction with N-(cyclopropyl)glycine.

Biochemistry. 2000 Nov 21;39(46):14341-7.

PubMed ID
11087383 [ View in PubMed
]
Abstract

Monomeric sarcosine oxidase (MSOX) catalyzes the oxidative demethylation of sarcosine (N-methylglycine) and contains covalently bound flavin adenine dinucleotide (FAD). The present study demonstrates that N-(cyclopropyl)glycine (CPG) is a mechanism-based inhibitor. CPG forms a charge transfer complex with MSOX that reacts under aerobic conditions to yield a covalently modified, reduced flavin (lambda(max) = 422 nm, epsilon(422) = 3.9 mM(-1) cm(-1)), accompanied by a loss of enzyme activity. The CPG-modified flavin is converted at an 8-fold slower rate to 1,5-dihydro-FAD (EFADH(2)), which reacts rapidly with oxygen to regenerate unmodified, oxidized enzyme. As a result, CPG-modified MSOX reaches a CPG-dependent steady-state concentration under aerobic conditions and reverts back to unmodified enzyme upon removal of excess reagent. No loss of activity is observed under anaerobic conditions where EFADH(2) is formed in a reaction that goes to completion at low CPG concentrations. Aerobic denaturation of CPG-modified enzyme yields unmodified, oxidized flavin at a rate similar to the anaerobic denaturation reaction, which yields 1,5-dihydro-FAD. The CPG-modified flavin can be reduced with borohydride, a reaction that blocks conversion to unmodified flavin upon removal of excess CPG or enzyme denaturation. The possible chemical mechanism of inactivation and structure of the CPG-modified flavin are discussed.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Monomeric sarcosine oxidaseP40859Details