Identification

Logo pink
Are you a
new drug developer?
Contact us to learn more about our customized products and solutions.
Name
AV608
Accession Number
DB05072
Type
Small Molecule
Groups
Investigational
Description

AV608 is a NK-1 antagonist. It is developed for the treatment of Social anxiety disorder (SAD), irritable bowel syndrome (IBS) and overactive bladder (OAB).

Synonyms
Not Available
Categories
Not Available
UNII
Not Available
CAS number
Not Available
Weight
Not Available
Chemical Formula
Not Available
InChI Key
Not Available
InChI
Not Available
IUPAC Name
Not Available
SMILES
Not Available

Pharmacology

Indication

Investigated for use/treatment in anxiety disorders, irritable bowel syndrome (IBS), and urinary incontinence.

Pharmacodynamics
Not Available
Mechanism of action

An extensive body of scientific literature supports the potential therapeutic application of NK-1 antagonists to the treatment of anxiety disorders. At a biological level, there is a close anatomical association between Substance P, NK-1 receptors and monoamines. More specifically, ~50% of ascending serotonin neurons in the brain also co-express substance P, and norepinephrine cell bodies in the locus coeruleus express NK-1 receptors. In addition, it has been demonstrated that NK-1 receptor blockade can alter the firing pattern of both serotonin and norepinephrine neurons and increase hippocampal neurogenesis. At a functional level, NK-1 antagonists (including AV608) have broadly demonstrated activity in nearly all of the traditionally used preclinical assays to identify anxiolytic agents, including those assays that are predictive for both benzodiazepines and selective serotonin reuptake inhibitors (SSRIs). Clinically, anxiety remains a high priority target for Industry, as evidenced by recent development activity in this area. It is known that the human intestinal mucosa expresses NK-1 receptors. These receptors are also found in the smooth muscle, arterioles, venules and cells associated with lymph nodules and co-localized with substance P, which is found throughout the gastrointestinal tract. Nerve fibers, including sensory fibers, come into close contact with mast cells, which also express NK-1 receptors. Furthermore, approximately 80% of visceral sensory afferents in the gut express substance P, and it is known that NK-1 receptors in the spinal cord mediate visceral hyperalgesia. Tachykinins are potent secretagogues at the small and large intestinal mucosa in several animal models as well as in the human colon, where there is a direct NK-1 receptor mediated response. Perhaps most important with respect to IBS is the observation that stimulation of sensory fibers or mast cells in the human intestinal tract causes the release of substance P and a consequent increase in epithelial ion transport through the activation of NK-1 receptors. The response to colorectal distension has often been used as a proxy for IBS. In this model, colorectal distension increases abdominal flinching, which is an indicator of pain. This procedure also activates a rectocolonic inhibitory reflex characterized by a decrease in colonic pressure and an increase in fluid transport. Several authors have now observed that NK-1 receptors mediate this rectocolonic inhibitory reflex. Decreased colonic pressure is related to increased colonic transit and these findings are therefore consistent with reports that stress increases intestinal transit, an effect blocked by NK-1 receptor antagonists. Overactive bladder is a common and distressing condition that has a profound effect on the daily living of affected individuals. This common cause of urinary incontinence describes a cluster of symptoms typified by urinary urgency, frequency, and urge urinary incontinence. Whereas the currently available anticholinergic drugs used to treat overactive bladder act on efferent nerves to counteract overactive bladder, essentially after it occurs, NK-1 antagonists appear to have promising therapeutic potential in their ability to affect the afferent nerves that modulate bladder contraction. A key potential advantage of NK-1 antagonists is that there may be essentially no decrement of detrusor contractility and no urinary retention risk, as is seen with current anticholinergic agents. This is because NK-1 antagonists inhibit sensory afferent nerves but not efferent nerves, which are important for normal and complete voiding of urine. Furthermore, NK-1 antagonists have a more favorable tolerability profile than observed with anticholinergic medications.

TargetActionsOrganism
USubstance-P receptorNot AvailableHumans
Absorption
Not Available
Volume of distribution
Not Available
Protein binding
Not Available
Metabolism
Not Available
Route of elimination
Not Available
Half life
Not Available
Clearance
Not Available
Toxicity
Not Available
Affected organisms
Not Available
Pathways
Not Available
Pharmacogenomic Effects/ADRs
Not Available

Interactions

Drug Interactions
Not Available
Food Interactions
Not Available

References

General References
Not Available
External Links
PubChem Substance
347909929

Clinical Trials

Clinical Trials
PhaseStatusPurposeConditionsCount
1TerminatedTreatmentIrritable Bowel Syndrome (IBS)1
2CompletedTreatmentSocial Phobia1
2TerminatedTreatmentUrinary Bladder, Overactive1

Pharmacoeconomics

Manufacturers
Not Available
Packagers
Not Available
Dosage forms
Not Available
Prices
Not Available
Patents
Not Available

Properties

State
Solid
Experimental Properties
Not Available
Predicted Properties
Not Available
Predicted ADMET features
Not Available

Spectra

Mass Spec (NIST)
Not Available
Spectra
Not Available

Taxonomy

Classification
Not classified

Targets

Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Tachykinin receptor activity
Specific Function
This is a receptor for the tachykinin neuropeptide substance P. It is probably associated with G proteins that activate a phosphatidylinositol-calcium second messenger system. The rank order of aff...
Gene Name
TACR1
Uniprot ID
P25103
Uniprot Name
Substance-P receptor
Molecular Weight
46250.5 Da

Drug created on October 21, 2007 16:23 / Updated on June 04, 2019 06:14