Structural basis for the specificity of the reducing end xylose-releasing exo-oligoxylanase from Bacillus halodurans C-125.

Article Details

Citation

Fushinobu S, Hidaka M, Honda Y, Wakagi T, Shoun H, Kitaoka M

Structural basis for the specificity of the reducing end xylose-releasing exo-oligoxylanase from Bacillus halodurans C-125.

J Biol Chem. 2005 Apr 29;280(17):17180-6. Epub 2005 Feb 17.

PubMed ID
15718242 [ View in PubMed
]
Abstract

Reducing end xylose-releasing exo-oligoxylanase from Bacillus halodurans C-125 (Rex) hydrolyzes xylooligosaccharides whose degree of polymerization is greater than or equal to 3, releasing the xylose unit at the reducing end. It is a unique exo-type glycoside hydrolase that recognizes the xylose unit at the reducing end in a very strict manner, even discriminating the beta-anomeric hydroxyl configuration from the alpha-anomer or 1-deoxyxylose. We have determined the crystal structures of Rex in unliganded and complex forms at 1.35-2.20-A resolution and revealed the structural aspects of its three subsites ranging from -2 to +1. The structure of Rex was compared with those of endo-type enzymes in glycoside hydrolase subfamily 8a (GH-8a). The catalytic machinery of Rex is basically conserved with other GH-8a enzymes. However, subsite +2 is blocked by a barrier formed by a kink in the loop before helix alpha10. His-319 in this loop forms a direct hydrogen bond with the beta-hydroxyl of xylose at subsite +1, contributing to the specific recognition of anomers at the reducing end.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Reducing end xylose-releasing exo-oligoxylanaseQ9KB30Details