Interplay between disulfide bonding and N-glycosylation defines SLC4 Na+-coupled transporter extracellular topography.

Article Details

Citation

Zhu Q, Kao L, Azimov R, Abuladze N, Newman D, Kurtz I

Interplay between disulfide bonding and N-glycosylation defines SLC4 Na+-coupled transporter extracellular topography.

J Biol Chem. 2015 Feb 27;290(9):5391-404. doi: 10.1074/jbc.M114.619320. Epub 2015 Jan 7.

PubMed ID
25568315 [ View in PubMed
]
Abstract

The extracellular loop 3 (EL-3) of SLC4 Na(+)-coupled transporters contains 4 highly conserved cysteines and multiple N-glycosylation consensus sites. In the electrogenic Na(+)-HCO3(-) cotransporter NBCe1-A, EL-3 is the largest extracellular loop and is predicted to consist of 82 amino acids. To determine the structural-functional importance of the conserved cysteines and the N-glycosylation sites in NBCe1-A EL-3, we analyzed the potential interplay between EL-3 disulfide bonding and N-glycosylation and their roles in EL-3 topological folding. Our results demonstrate that the 4 highly conserved cysteines form two intramolecular disulfide bonds, Cys(583)-Cys(585) and Cys(617)-Cys(642), respectively, that constrain EL-3 in a folded conformation. The formation of the second disulfide bond is spontaneous and unaffected by the N-glycosylation state of EL-3 or the first disulfide bond, whereas formation of the first disulfide bond relies on the presence of the second disulfide bond and is affected by N-glycosylation. Importantly, EL-3 from each monomer is adjacently located at the NBCe1-A dimeric interface. When the two disulfide bonds are missing, EL-3 adopts an extended conformation highly accessible to protease digestion. This unique adjacent parallel location of two symmetrically folded EL-3 loops from each monomer resembles a domain-like structure that is potentially important for NBCe1-A function in vivo. Moreover, the formation of this unique structure is critically dependent on the finely tuned interplay between disulfide bonding and N-glycosylation in the membrane processed NBCe1-A dimer.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Electrogenic sodium bicarbonate cotransporter 1Q9Y6R1Details