Thonzonium bromide inhibits RANKL-induced osteoclast formation and bone resorption in vitro and prevents LPS-induced bone loss in vivo.

Article Details

Citation

Zhu X, Gao JJ, Landao-Bassonga E, Pavlos NJ, Qin A, Steer JH, Zheng MH, Dong Y, Cheng TS

Thonzonium bromide inhibits RANKL-induced osteoclast formation and bone resorption in vitro and prevents LPS-induced bone loss in vivo.

Biochem Pharmacol. 2016 Mar 15;104:118-30. doi: 10.1016/j.bcp.2016.02.013. Epub 2016 Feb 21.

PubMed ID
26906912 [ View in PubMed
]
Abstract

Osteoclasts (OCs) play a pivotal role in a variety of lytic bone diseases including osteoporosis, arthritis, bone tumors, Paget's disease and the aseptic loosening of orthopedic implants. The primary focus for the development of bone-protective therapies in these diseases has centered on the suppression of OC formation and function. In this study we report that thonzonium bromide (TB), a monocationic surface-active agent, inhibited RANKL-induced OC formation, the appearance of OC-specific marker genes and bone-resorbing activity in vitro. Mechanistically, TB blocked the RANKL-induced activation of NF-kappaB, ERK and c-Fos as well as the induction of NFATc1 which is essential for OC formation. TB disrupted F-actin ring formation resulting in disturbances in cytoskeletal structure in mature OCs during bone resorption. Furthermore, TB exhibited protective effects in an in vivo murine model of LPS-induced calvarial osteolysis. Collectively, these data suggest that TB might be a useful alternative therapy in preventing or treating osteolytic diseases.

DrugBank Data that Cites this Article

Drugs