Calcium-activated potassium channels and nitrate-induced vasodilation in human coronary arteries.

Article Details

Citation

Bychkov R, Gollasch M, Steinke T, Ried C, Luft FC, Haller H

Calcium-activated potassium channels and nitrate-induced vasodilation in human coronary arteries.

J Pharmacol Exp Ther. 1998 Apr;285(1):293-8.

PubMed ID
9536024 [ View in PubMed
]
Abstract

In some but not all arterial beds, smooth muscle cell calcium-activated K+ channels (KCa channels) play a central role in the mediation of the vasodilator response to nitric oxide (NO) and other nitrates. We investigated the effect of nitrates on KCa channels in the relaxation of human coronary arteries by means of isometric contraction experiments in arterial rings. We also measured whole-cell currents in freshly isolated human coronary artery vascular smooth muscle cells via the patch-clamp technique. Sodium nitroprusside, diethylamine-nitric oxide complex sodium salt and isosorbide mononitratre completely relaxed rings preconstricted with 5 microM serotonin and produced dose-dependent relaxations of 5 microM serotonin-preconstricted human rings. The relaxations were inhibited by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-oxyl 3-oxide (10 microM), which neutralizes nitric oxide. The KCa channel blockers iberiotoxin (100 nM) and tetraethylammonium ions (1 mM) significantly inhibited SNP-induced relaxations of human coronary arteries. Moreover, in the patch-clamp experiments, SNP (1 microM) stimulated KCa currents and spontaneous transient outward K+ currents carried by Ca spark activated KCa channels. The SNP-induced (1 microM) KCa current was strongly inhibited by iberiotoxin (100 nM). These data show that activation of KCa channels in smooth muscle cells contributes to the vasodilating actions of nitrates and nitric oxide in human coronary arteries. This finding may have unique clinical significance for the development of antianginal and antihypertensive drugs that selectively target K+ channels and Ca sparks.

DrugBank Data that Cites this Article

Drugs