Inhibition of oral midazolam clearance by boosting doses of ritonavir, and by 4,4-dimethyl-benziso-(2H)-selenazine (ALT-2074), an experimental catalytic mimic of glutathione oxidase.

Article Details

Citation

Greenblatt DJ, Peters DE, Oleson LE, Harmatz JS, MacNab MW, Berkowitz N, Zinny MA, Court MH

Inhibition of oral midazolam clearance by boosting doses of ritonavir, and by 4,4-dimethyl-benziso-(2H)-selenazine (ALT-2074), an experimental catalytic mimic of glutathione oxidase.

Br J Clin Pharmacol. 2009 Dec;68(6):920-7. doi: 10.1111/j.1365-2125.2009.03545.x.

PubMed ID
20002087 [ View in PubMed
]
Abstract

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT: * The viral protease inhibitor ritonavir is known to inhibit clearance of intravenous midazolam. * ALT-2074, a catalytic mimic of glutathione oxidase, inhibits human cytochrome P450 3A (CYP3A) isoforms in vitro. WHAT THIS STUDY ADDS: * Short-term administration of low-dose ritonavir increases area under the plasma concentration curve following oral midazolam by a factor of 28. * Therefore ritonavir is an appropriate positive control inhibitor for clinical drug interaction studies involving CYP3A substrates. * Midazolam clearance is weakly inhibited by ALT-2074, consistent with its in vitro profile. AIMS: We evaluated whether 'boosting' doses of ritonavir can serve as a positive control inhibitor for pharmacokinetic drug-drug interaction studies involving cytochrome P450 3A (CYP3A). The study also determined whether 4,4-dimethyl-benziso-(2H)-selenazine (ALT-2074), an investigational organoselenium compound that acts as a catalytic mimic of glutathione oxidase, inhibits CYP3A metabolism in vivo. METHODS: Thirteen healthy volunteers received single 3-mg oral doses of midazolam on three occasions: in the control condition, during co-treatment with low-dose ritonavir (three oral doses of 100 mg over 24 h), and during co-treatment with ALT-2074 (three oral doses of 80 mg over 24 h). RESULTS: Ritonavir increased mean (+/-SE) total area under the curve (AUC) for midazolam by a factor of 28.4 +/- 4.2 (P < 0.001), and reduced oral clearance to 4.2 +/- 0.5% of control (P < 0.001). In contrast, ALT-2074 increased midazolam AUC by 1.25 +/- 0.11 (P < 0.05), and reduced oral clearance to 88 +/- 8% of control. CONCLUSIONS: Low-dose ritonavir produces extensive CYP3A inhibition exceeding that of ketoconazole (typically 10- to 15-fold midazolam AUC enhancement), and is a suitable positive control index inhibitor for drug-drug interaction studies. ALT-2074 inhibits CYP3A metabolism to a small degree that is of uncertain clinical importance.

DrugBank Data that Cites this Article

Drugs