Molecular basis of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: identification of the major disease-causing mutation in the alpha-subunit of the mitochondrial trifunctional protein.

Article Details

Citation

IJlst L, Wanders RJ, Ushikubo S, Kamijo T, Hashimoto T

Molecular basis of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: identification of the major disease-causing mutation in the alpha-subunit of the mitochondrial trifunctional protein.

Biochim Biophys Acta. 1994 Dec 8;1215(3):347-50.

PubMed ID
7811722 [ View in PubMed
]
Abstract

Mitochondrial trifunctional protein is a newly identified enzyme involved in mitochondrial fatty acid beta-oxidation harbouring long-chain enoyl-CoA hydratase, long-chain 3-hydroxyacyl-CoA dehydrogenase and long-chain 3-ketothiolase activity. Over the last few years, we identified more than 26 patients with a deficiency in long-chain 3-hydroxyacyl-CoA dehydrogenase. In order to identify the molecular basis for the deficiency found in these patients, we sequenced the cDNAs encoding the alpha- and beta-subunits which revealed one G-->C mutation at nucleotide position 1528 in the 3-hydroxyacyl-CoA dehydrogenase encoding region of the alpha-subunit. The single base change results in the substitution of a glutamate for a glutamine at amino acid position 510. The base substitution creates a PstI restriction site. Using RFLP, we found that in 24 out of 26 unrelated patients only the C1528 was expressed. The other two patients were heterozygous for this mutation. This mutation was not found in 55 different control subjects. This indicates a high frequency for this mutation in long-chain 3-hydroxyacyl-CoA dehydrogenase deficient patients.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Trifunctional enzyme subunit alpha, mitochondrialP40939Details