The mitogen-activated protein kinase signal-integrating kinase Mnk2 is a eukaryotic initiation factor 4E kinase with high levels of basal activity in mammalian cells.

Article Details

Citation

Scheper GC, Morrice NA, Kleijn M, Proud CG

The mitogen-activated protein kinase signal-integrating kinase Mnk2 is a eukaryotic initiation factor 4E kinase with high levels of basal activity in mammalian cells.

Mol Cell Biol. 2001 Feb;21(3):743-54.

PubMed ID
11154262 [ View in PubMed
]
Abstract

The cap-binding translation initiation factor eukaryotic initiation factor 4E (eIF4E) is phosphorylated in vivo at Ser209 in response to a variety of stimuli. In this paper, we show that the mitogen-activated protein kinase (MAPK) signal-integrating kinase Mnk2 phosphorylates eIF4E at this residue. Mnk2 binds to the scaffolding protein eIF4G, and overexpression of Mnk2 results in increased phosphorylation of endogenous eIF4E, showing that it can act as an eIF4E kinase in vivo. We have identified eight phosphorylation sites in Mnk2, of which at least three potential MAPK sites are likely to be essential for Mnk2 activity. In contrast to that of Mnk1, the activity of overexpressed Mnk2 is high under control conditions and could only be reduced substantially by a combination of PD98059 and SB203580, while the activity of endogenous Mnk2 in Swiss 3T3 cells was hardly affected upon treatment with these inhibitors. These compounds did not abolish phosphorylation of eIF4E, implying that Mnk2 may mediate phosphorylation of eIF4E in Swiss 3T3 cells. In vitro phosphorylation studies show that Mnk2 is a significantly better substrate than Mnk1 for extracellular signal-regulated kinase 2 (ERK2), p38MAPKalpha, and p38MAPKbeta. Therefore, the high levels of activity of Mnk2 under several conditions may be explained by efficient activation of Mnk2 by low levels of activity of the upstream kinases. Interestingly, we found that the association of both Mnk1 and Mnk2 with eIF4G increased upon inhibition of the MAPK pathways while activation of ERK resulted in decreased binding to eIF4G. This might reflect a mechanism to ensure rapid, but transient, phosphorylation of eIF4E upon stimulation of the MAPK pathways.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Mitogen-activated protein kinase 1P28482Details
Eukaryotic translation initiation factor 4EP06730Details
Mitogen-activated protein kinase 14Q16539Details
Mitogen-activated protein kinase 11Q15759Details
MAP kinase-interacting serine/threonine-protein kinase 2Q9HBH9Details