Structure of the C-type lectin carbohydrate recognition domain of human tetranectin.

Article Details

Citation

Kastrup JS, Nielsen BB, Rasmussen H, Holtet TL, Graversen JH, Etzerodt M, Thogersen HC, Larsen IK

Structure of the C-type lectin carbohydrate recognition domain of human tetranectin.

Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):757-66.

PubMed ID
9757090 [ View in PubMed
]
Abstract

Tetranectin (TN) is a C-type lectin involved in fibrinolysis, being the only endogenous ligand known to bind specifically to the kringle 4 domain of plasminogen. TN was originally isolated from plasma, but shows a wide tissue distribution. Furthermore, TN has been found in the extracellular matrix of certain human carcinomas, whereas none or little is present in the corresponding normal tissue. The crystal structure of full-length trimeric TN (2.8 A resolution) has recently been published [Nielsen et al. (1997). FEBS Lett. 412, 388-396]. The crystal structure of the carbohydrate recognition domain (CRD) of human TN (TN3) has been determined separately at 2.0 A resolution in order to obtain detailed information on the two calcium binding sites. This information is essential for the elucidation of the specificity of TN towards oligosaccharides. TN3 crystallizes as a dimer, whereas it appears as a monomer in solution. The overall fold of TN3 is similar to other known CRDs. Each monomer is built of two distinct regions, one region consisting of six beta-strands and two alpha-helices, and the other region is composed of four loops harboring two calcium ions. The calcium ion at site 1 forms an eightfold coordinated complex and has Asp116, Glu120, Gly147, Glu150, Asn151, and one water molecule as ligands. The calcium ion at site 2, which is believed to be involved in recognition and binding of oligosaccharides, is sevenfold coordinated with ligands Gln143, Asp145, Glu150, Asp165, and two water molecules. One sulfate ion has been located at the surface of TN3, forming contacts to Glu120, Lys148, Asn106 of a symmetry-related molecule, and to an ethanol molecule.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
TetranectinP05452Details