You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on DrugBank.
Identification
NameBarbital
Accession NumberDB01483
TypeSmall Molecule
GroupsIllicit
Description

A long-acting barbiturate that depresses most metabolic processes at high doses. It is used as a hypnotic and sedative and may induce dependence. Barbital is also used in veterinary practice for central nervous system depression. Barbital is a schedule IV controlled drug.

Structure
Thumb
SynonymsNot Available
External Identifiers Not Available
Approved Prescription ProductsNot Available
Approved Generic Prescription ProductsNot Available
Approved Over the Counter ProductsNot Available
Unapproved/Other Products Not Available
International BrandsNot Available
Brand mixturesNot Available
SaltsNot Available
Categories
UNII5WZ53ENE2P
CAS number57-44-3
WeightAverage: 184.1925
Monoisotopic: 184.08479226
Chemical FormulaC8H12N2O3
InChI KeyInChIKey=FTOAOBMCPZCFFF-UHFFFAOYSA-N
InChI
InChI=1S/C8H12N2O3/c1-3-8(4-2)5(11)9-7(13)10-6(8)12/h3-4H2,1-2H3,(H2,9,10,11,12,13)
IUPAC Name
5,5-diethyl-1,3-diazinane-2,4,6-trione
SMILES
CCC1(CC)C(=O)NC(=O)NC1=O
Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as barbituric acid derivatives. These are compounds containing a perhydropyrimidine ring substituted at C-2, -4 and -6 by oxo groups.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassDiazines
Sub ClassPyrimidines and pyrimidine derivatives
Direct ParentBarbituric acid derivatives
Alternative Parents
Substituents
  • Barbiturate
  • Ureide
  • 1,3-diazinane
  • Urea
  • Carboxamide group
  • Azacycle
  • Carboxylic acid derivative
  • Hydrocarbon derivative
  • Organooxygen compound
  • Organonitrogen compound
  • Carbonyl group
  • Aliphatic heteromonocyclic compound
Molecular FrameworkAliphatic heteromonocyclic compounds
External Descriptors
Pharmacology
IndicationNot Available
PharmacodynamicsNot Available
Mechanism of actionNot Available
Related Articles
AbsorptionNot Available
Volume of distributionNot Available
Protein bindingNot Available
MetabolismNot Available
Route of eliminationNot Available
Half lifeNot Available
ClearanceNot Available
ToxicityNot Available
Affected organismsNot Available
PathwaysNot Available
SNP Mediated EffectsNot Available
SNP Mediated Adverse Drug ReactionsNot Available
ADMET
Predicted ADMET features
PropertyValueProbability
Human Intestinal Absorption+0.955
Blood Brain Barrier+0.9694
Caco-2 permeable-0.6146
P-glycoprotein substrateNon-substrate0.5238
P-glycoprotein inhibitor INon-inhibitor0.7826
P-glycoprotein inhibitor IINon-inhibitor0.9964
Renal organic cation transporterNon-inhibitor0.9395
CYP450 2C9 substrateNon-substrate0.7915
CYP450 2D6 substrateNon-substrate0.9074
CYP450 3A4 substrateNon-substrate0.7823
CYP450 1A2 substrateNon-inhibitor0.896
CYP450 2C9 inhibitorNon-inhibitor0.9436
CYP450 2D6 inhibitorNon-inhibitor0.9586
CYP450 2C19 inhibitorNon-inhibitor0.918
CYP450 3A4 inhibitorNon-inhibitor0.9723
CYP450 inhibitory promiscuityLow CYP Inhibitory Promiscuity0.9847
Ames testAMES toxic0.5531
CarcinogenicityNon-carcinogens0.8532
BiodegradationNot ready biodegradable0.9462
Rat acute toxicity3.5489 LD50, mol/kg Not applicable
hERG inhibition (predictor I)Weak inhibitor0.9913
hERG inhibition (predictor II)Non-inhibitor0.9734
ADMET data is predicted using admetSAR, a free tool for evaluating chemical ADMET properties. (23092397 )
Pharmacoeconomics
ManufacturersNot Available
PackagersNot Available
Dosage formsNot Available
PricesNot Available
PatentsNot Available
Properties
StateSolid
Experimental Properties
PropertyValueSource
melting point190 °CPhysProp
boiling point250 °C at 2.20E+01 mm HgPhysProp
water solubility7460 mg/L (at 25 °C)YALKOWSKY,SH & DANNENFELSER,RM (1992)
logP0.65HANSCH,C ET AL. (1995)
logS-1.39ADME Research, USCD
pKa8.14 (at 15 °C)KORTUM,G ET AL (1961)
Predicted Properties
PropertyValueSource
Water Solubility3.23 mg/mLALOGPS
logP0.73ALOGPS
logP0.72ChemAxon
logS-1.8ALOGPS
pKa (Strongest Acidic)8.48ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area75.27 Å2ChemAxon
Rotatable Bond Count2ChemAxon
Refractivity44.25 m3·mol-1ChemAxon
Polarizability17.59 Å3ChemAxon
Number of Rings1ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Spectra
Mass Spec (NIST)Download (8.31 KB)
Spectra
Spectrum TypeDescriptionSplash Key
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, PositiveNot Available
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, PositiveNot Available
References
Synthesis ReferenceNot Available
General ReferencesNot Available
External Links
ATC CodesN05CA04
AHFS CodesNot Available
PDB EntriesNot Available
FDA labelNot Available
MSDSNot Available
Interactions
Drug InteractionsNot Available
Food InteractionsNot Available

Targets

Kind
Protein
Organism
Human
Pharmacological action
yes
Actions
potentiator
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel (By si...
Gene Name:
GABRA1
Uniprot ID:
P14867
Molecular Weight:
51801.395 Da
References
  1. Whiting PJ: The GABAA receptor gene family: new opportunities for drug development. Curr Opin Drug Discov Devel. 2003 Sep;6(5):648-57. [PubMed:14579514 ]
  2. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [PubMed:10209232 ]
  3. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449 ]
  4. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [PubMed:10487207 ]
Kind
Protein
Organism
Human
Pharmacological action
yes
Actions
potentiator
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA2
Uniprot ID:
P47869
Molecular Weight:
51325.85 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449 ]
  2. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [PubMed:10209232 ]
Kind
Protein
Organism
Human
Pharmacological action
yes
Actions
potentiator
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA3
Uniprot ID:
P34903
Molecular Weight:
55164.055 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449 ]
  2. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [PubMed:10209232 ]
Kind
Protein
Organism
Human
Pharmacological action
yes
Actions
potentiator
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA4
Uniprot ID:
P48169
Molecular Weight:
61622.645 Da
References
  1. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [PubMed:10209232 ]
Kind
Protein
Organism
Human
Pharmacological action
yes
Actions
potentiator
General Function:
Transporter activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA5
Uniprot ID:
P31644
Molecular Weight:
52145.645 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449 ]
  2. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [PubMed:10209232 ]
Kind
Protein
Organism
Human
Pharmacological action
yes
Actions
potentiator
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA6
Uniprot ID:
Q16445
Molecular Weight:
51023.69 Da
References
  1. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [PubMed:10209232 ]
  2. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
antagonist
General Function:
Ligand-gated ion channel activity
Specific Function:
After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane permeable to sodium ions.
Gene Name:
CHRNA4
Uniprot ID:
P43681
Molecular Weight:
69956.47 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449 ]
  2. Arias HR, Bhumireddy P: Anesthetics as chemical tools to study the structure and function of nicotinic acetylcholine receptors. Curr Protein Pept Sci. 2005 Oct;6(5):451-72. [PubMed:16248797 ]
  3. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [PubMed:10487207 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
antagonist
General Function:
Toxic substance binding
Specific Function:
After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. The channel is blocked by alpha-bungarotoxin.
Gene Name:
CHRNA7
Uniprot ID:
P36544
Molecular Weight:
56448.925 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449 ]
  2. Arias HR, Bhumireddy P: Anesthetics as chemical tools to study the structure and function of nicotinic acetylcholine receptors. Curr Protein Pept Sci. 2005 Oct;6(5):451-72. [PubMed:16248797 ]
  3. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [PubMed:10487207 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
antagonist
General Function:
Ionotropic glutamate receptor activity
Specific Function:
Receptor for glutamate that functions as ligand-gated ion channel in the central nervous system and plays an important role in excitatory synaptic transmission. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L-glutamate induces a conformation change, leading to the opening of the cation channel, and t...
Gene Name:
GRIA2
Uniprot ID:
P42262
Molecular Weight:
98820.32 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449 ]
  2. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [PubMed:10487207 ]
Kind
Protein
Organism
Human
Pharmacological action
unknown
Actions
antagonist
General Function:
Kainate selective glutamate receptor activity
Specific Function:
Ionotropic glutamate receptor. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L-glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse. The receptor then desensitizes rapidly and enters a transient inacti...
Gene Name:
GRIK2
Uniprot ID:
Q13002
Molecular Weight:
102582.475 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449 ]
  2. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [PubMed:10487207 ]
Comments
comments powered by Disqus
Drug created on July 31, 2007 07:09 / Updated on March 27, 2015 10:18