You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on DrugBank.
Identification
NameICA-105665
Accession NumberDB06089
TypeSmall Molecule
GroupsInvestigational
Description

ICA-105665 is a novel small molecule compound for the treatment of epilepsy. It is a novel opener of the KCNQ ion channel which in preclinical studies has demonstrated a broad spectrum of activity in models of epilepsy. In addition, ICA-105665 has also demonstrated activity in certain models of neuropathic pain.

Structure
Thumb
SynonymsNot Available
External Identifiers Not Available
Approved Prescription ProductsNot Available
Approved Generic Prescription ProductsNot Available
Approved Over the Counter ProductsNot Available
Unapproved/Other Products Not Available
International BrandsNot Available
Brand mixturesNot Available
SaltsNot Available
CategoriesNot Available
UNIINot Available
CAS numberNot Available
WeightNot Available
Chemical FormulaNot Available
InChI KeyNot Available
InChINot Available
IUPAC NameNot Available
SMILESNot Available
Taxonomy
ClassificationNot classified
Pharmacology
IndicationInvestigated for use/treatment in epilepsy.
PharmacodynamicsNot Available
Mechanism of actionICA-105665 is an activator of subtypes of KCNQ ion channels, which are attractive targets for the treatment of epilepsy based on their function and genetic linkage to a seizure disorder.
Related Articles
AbsorptionNot Available
Volume of distributionNot Available
Protein bindingNot Available
MetabolismNot Available
Route of eliminationNot Available
Half lifeNot Available
ClearanceNot Available
ToxicityNot Available
Affected organismsNot Available
PathwaysNot Available
SNP Mediated EffectsNot Available
SNP Mediated Adverse Drug ReactionsNot Available
ADMET
Predicted ADMET features
PropertyValueProbability
Human Intestinal AbsorptionNot AvailableNot Available
Blood Brain BarrierNot AvailableNot Available
Caco-2 permeableNot AvailableNot Available
P-glycoprotein substrateNot AvailableNot Available
P-glycoprotein inhibitor INot AvailableNot Available
P-glycoprotein inhibitor IINot AvailableNot Available
Renal organic cation transporterNot AvailableNot Available
CYP450 2C9 substrateNot AvailableNot Available
CYP450 2D6 substrateNot AvailableNot Available
CYP450 3A4 substrateNot AvailableNot Available
CYP450 1A2 substrateNot AvailableNot Available
CYP450 2C9 inhibitorNot AvailableNot Available
CYP450 2D6 inhibitorNot AvailableNot Available
CYP450 2C19 inhibitorNot AvailableNot Available
CYP450 3A4 inhibitorNot AvailableNot Available
CYP450 inhibitory promiscuityNot AvailableNot Available
Ames testNot AvailableNot Available
CarcinogenicityNot AvailableNot Available
BiodegradationNot AvailableNot Available
Rat acute toxicityNot AvailableNot applicable
hERG inhibition (predictor I)Not AvailableNot Available
hERG inhibition (predictor II)Not AvailableNot Available
ADMET data is predicted using admetSAR, a free tool for evaluating chemical ADMET properties. (23092397 )
Pharmacoeconomics
ManufacturersNot Available
PackagersNot Available
Dosage formsNot Available
PricesNot Available
PatentsNot Available
Properties
StateSolid
Experimental PropertiesNot Available
Predicted PropertiesNot Available
Spectra
Mass Spec (NIST)Not Available
Spectra
Spectrum TypeDescriptionSplash Key
References
Synthesis ReferenceNot Available
General ReferencesNot Available
External Links
ATC CodesNot Available
AHFS CodesNot Available
PDB EntriesNot Available
FDA labelNot Available
MSDSNot Available
Interactions
Drug InteractionsNot Available
Food InteractionsNot Available

Targets

Kind
Protein
Organism
Human
Pharmacological action
unknown
General Function:
Voltage-gated potassium channel activity involved in ventricular cardiac muscle cell action potential repolarization
Specific Function:
Potassium channel that plays an important role in a number of tissues, including heart, inner ear, stomach and colon (By similarity) (PubMed:10646604). Associates with KCNE beta subunits that modulates current kinetics (By similarity) (PubMed:9312006, PubMed:9108097, PubMed:8900283, PubMed:10646604, PubMed:11101505, PubMed:19687231). Induces a voltage-dependent by rapidly activating and slowly ...
Gene Name:
KCNQ1
Uniprot ID:
P51787
Molecular Weight:
74697.925 Da
Kind
Protein
Organism
Human
Pharmacological action
unknown
General Function:
Voltage-gated potassium channel activity
Specific Function:
Probably important in the regulation of neuronal excitability. Associates with KCNQ2 or KCNQ5 to form a potassium channel with essentially identical properties to the channel underlying the native M-current, a slowly activating and deactivating potassium conductance which plays a critical role in determining the subthreshold electrical excitability of neurons as well as the responsiveness to sy...
Gene Name:
KCNQ3
Uniprot ID:
O43525
Molecular Weight:
96741.515 Da
Kind
Protein
Organism
Human
Pharmacological action
unknown
General Function:
Potassium channel activity
Specific Function:
Probably important in the regulation of neuronal excitability. May underlie a potassium current involved in regulating the excitability of sensory cells of the cochlea. KCNQ4 channels are blocked by linopirdin, XE991 and bepridil, whereas clofilium is without significant effect. Muscarinic agonist oxotremorine-M strongly suppress KCNQ4 current in CHO cells in which cloned KCNQ4 channels were co...
Gene Name:
KCNQ4
Uniprot ID:
P56696
Molecular Weight:
77099.99 Da
Kind
Protein
Organism
Human
Pharmacological action
unknown
General Function:
Voltage-gated potassium channel activity
Specific Function:
Probably important in the regulation of neuronal excitability. Associates with KCNQ3 to form a potassium channel which contributes to M-type current, a slowly activating and deactivating potassium conductance which plays a critical role in determining the subthreshold electrical excitability of neurons. May contribute, with other potassium channels, to the molecular diversity of a heterogeneous...
Gene Name:
KCNQ5
Uniprot ID:
Q9NR82
Molecular Weight:
102178.015 Da
Kind
Protein
Organism
Human
Pharmacological action
unknown
General Function:
Voltage-gated potassium channel activity
Specific Function:
Probably important in the regulation of neuronal excitability. Associates with KCNQ3 to form a potassium channel with essentially identical properties to the channel underlying the native M-current, a slowly activating and deactivating potassium conductance which plays a critical role in determining the subthreshold electrical excitability of neurons as well as the responsiveness to synaptic in...
Gene Name:
KCNQ2
Uniprot ID:
O43526
Molecular Weight:
95846.575 Da
Comments
comments powered by Disqus
Drug created on November 18, 2007 11:29 / Updated on September 13, 2013 12:12