The role of IL-4 in proliferation and differentiation of human natural killer cells. Study of an IL-4-dependent versus an IL-2-dependent natural killer cell clone.

Article Details

Citation

Hayakawa K, Salmeron MA, Kornbluth J, Bucana C, Itoh K

The role of IL-4 in proliferation and differentiation of human natural killer cells. Study of an IL-4-dependent versus an IL-2-dependent natural killer cell clone.

J Immunol. 1991 Apr 1;146(7):2453-60.

PubMed ID
1900882 [ View in PubMed
]
Abstract

The role of IL-4 in proliferation and differentiation of human NK cells was studied using newly established sublines of an IL-4-dependent NK cell clone (IL4d-NK cells) and an IL-2-dependent NK cell clone (IL2d-NK cells) derived from a parental conditioned medium-dependent NK cell clone (CM-NK cells). IL-4 induced the higher proliferation of CM-NK cells, but abolished their NK activity and decreased CD16 and CD56 Ag expression. In contrast, IL-2 induced the higher NK activity and increased CD16 and CD56 Ag expression. Addition of anti-IL-4 antibody to the culture of CM-NK cells with CM inhibited the proliferation, but slightly increased NK activity, and largely increased CD56 Ag expression. Addition of anti-IL-2 antibody to the culture of CM-NK cells with CM inhibited both proliferation and cytotoxicity. Proliferation of IL4d-NK cells, which is totally dependent on rIL-4, is greater than that of IL2d-NK cells, which was greater than parental CM-NK cells. Morphologically, IL4d-NK cells are small and round, whereas IL2d-NK cells are large and elongated. Anti-IL-4 antibody inhibited proliferation of IL4d-NK but not IL2d-NK cells, whereas anti-IL-2 antibody inhibited that of IL2d-NK but not IL4d-NK cells. IL-2 was not detected in the supernatant from IL4d-NK cells, nor was IL-2-mRNA expressed in IL4d-NK cells. In contrast, IFN-gamma production and protein expression in IL4d- and IL2d-NK cells were detected. NK cell activation markers (CD16 and CD56) were expressed on IL2d-NK cells but not IL4d-NK cells. IL4d-NK cells were not cytotoxic to any tumor cells tested, whereas IL2d-NK cells displayed potent NK activity and lymphokine-activated killer activity. IL4d-NK cells failed to bind K562 tumor cells, whereas one-third of the IL2d-NK cells did. IL4d-NK cells responded to rIL-2, proliferated, and differentiated into cytotoxic NK cells, whereas IL2d-NK cells failed to respond to rIL-4 and died. These results raise a possibility that IL4d-NK cells or IL2d-NK cells primarily represent the immunologic properties of immature or activated types of human NK cells, respectively. Our results provide the first evidence of the capability of IL-4 to support continuous proliferation of a lymphocyte clone with immature NK cell characteristics and to stimulate IFN-gamma production in the clone. IL-4 is suggested as a potential growth factor for certain types of human NK cell progenitors.

DrugBank Data that Cites this Article

Drug Targets
DrugTargetKindOrganismPharmacological ActionActions
DaclizumabLow affinity immunoglobulin gamma Fc region receptor III-BProteinHumans
Unknown
Not AvailableDetails