Staphylococcus aureus elongation factor G--structure and analysis of a target for fusidic acid.

Article Details

Citation

Chen Y, Koripella RK, Sanyal S, Selmer M

Staphylococcus aureus elongation factor G--structure and analysis of a target for fusidic acid.

FEBS J. 2010 Sep;277(18):3789-803. doi: 10.1111/j.1742-4658.2010.07780.x. Epub 2010 Aug 13.

PubMed ID
20718859 [ View in PubMed
]
Abstract

Fusidic acid (FA) is a bacteriostatic antibiotic that locks elongation factor G (EF-G) on the ribosome in a post-translocational state. It is used clinically against Gram-positive bacteria such as pathogenic strains of Staphylococcus aureus, but no structural information has been available for EF-G from these species. We have solved the apo crystal structure of EF-G from S. aureus to 1.9 A resolution. This structure shows a dramatically different overall conformation from previous structures of EF-G, although the individual domains are highly similar. Between the different structures of free or ribosome-bound EF-G, domains III-V move relative to domains I-II, resulting in a displacement of the tip of domain IV relative to domain G. In S. aureus EF-G, this displacement is about 25 A relative to structures of Thermus thermophilus EF-G in a direction perpendicular to that in previous observations. Part of the switch I region (residues 46-56) is ordered in a helix, and has a distinct conformation as compared with structures of EF-Tu in the GDP and GTP states. Also, the switch II region shows a new conformation, which, as in other structures of free EF-G, is incompatible with FA binding. We have analysed and discussed all known fusA-based fusidic acid resistance mutations in the light of the new structure of EF-G from S. aureus, and a recent structure of T. thermophilus EF-G in complex with the 70S ribosome with fusidic acid [Gao YG et al. (2009) Science326, 694-699]. The mutations can be classified as affecting FA binding, EF-G-ribosome interactions, EF-G conformation, and EF-G stability.

DrugBank Data that Cites this Article

Drug Targets
DrugTargetKindOrganismPharmacological ActionActions
Fusidic acidElongation factor GProteinThermus thermophilus
Yes
Inhibitor
Details