Atomoxetine acts as an NMDA receptor blocker in clinically relevant concentrations.

Article Details

Citation

Ludolph AG, Udvardi PT, Schaz U, Henes C, Adolph O, Weigt HU, Fegert JM, Boeckers TM, Fohr KJ

Atomoxetine acts as an NMDA receptor blocker in clinically relevant concentrations.

Br J Pharmacol. 2010 May;160(2):283-91. doi: 10.1111/j.1476-5381.2010.00707.x.

PubMed ID
20423340 [ View in PubMed
]
Abstract

BACKGROUND AND PURPOSE: There is increasing evidence that not only the monoaminergic but also the glutamatergic system is involved in the pathophysiology of attention-deficit hyperactivity disorder (ADHD). Hyperactivity of glutamate metabolism might be causally related to a hypoactive state in the dopaminergic system. Atomoxetine, a selective noradrenaline reuptake inhibitor, is the first non-stimulant approved for the treatment of this disorder. Here we have evaluated the effects of atomoxetine on glutamate receptors in vitro. EXPERIMENTAL APPROACH: The whole-cell configuration of the patch-clamp technique was used to analyse the effect of atomoxetine on N-methyl-d-aspartate (NMDA) receptors in cultured rodent cortical and hippocampal neurons as well as on NMDA receptors heterologously expressed in human TsA cells. KEY RESULTS: Atomoxetine blocked NMDA-induced membrane currents. Half-maximal inhibition emerged at about 3 microM which is in the range of clinically relevant concentrations found in plasma of patients treated with this drug. The inhibition was voltage-dependent, indicating an open-channel blocking mechanism. Furthermore, the inhibitory potency of atomoxetine did not vary when measured on NMDA receptors from different brain regions or with different subunit compositions. CONCLUSIONS AND IMPLICATIONS: The effective NMDA receptor antagonism by atomoxetine at low micromolar concentrations may be relevant to its clinical effects in the treatment of ADHD. Our data provide further evidence that altered glutamatergic transmission might play a role in ADHD pathophysiology.

DrugBank Data that Cites this Article

Drugs
Drug Targets
DrugTargetKindOrganismPharmacological ActionActions
AtomoxetineNMDA receptor (Protein Group)Protein groupHumans
Unknown
Blocker
Details